

Year 9 Straight Line Graphs

Keywords

Gradient:

The steepness of a line

Intercept:

This is where two lines cross

The y-intercept:

This is where the line meets the y-axis

Parallel:

Two lines that never meet with the same gradient

Co-ordinate:

A set of values that show an exact position on a graph

Substitute:

When a letter is replaced by a number

Reciprocal:

A pair of numbers that multiply together to give 1

Perpendicular:

Two lines that meet at a right angle. The gradients multiplied equals to -1

Coefficient:

A number or quantity placed with a variable.

Year 8

- Generate sequences given a rule in words
- Generate sequences given a simple algebraic rule
- Generate sequences given a complex algebraic rule
- Find the rule for the nth term of a linear sequence

Year 9

- Using table of values
- Lines parallel to the axis, $y=x$ and $y=-x$
- Understand and use $y=mx+c$
- Find the equation of a line from a graph
- Compare gradients
- Compare intercepts

Learning Journey

Key Knowledge

$$y = mx + c$$

The coefficient of x (the number in front of x) tells us the **gradient** of the line

$$y = mx + c$$

Y and x are coordinates

The value of c is the point at which the line crosses the y-axis.
Y intercept

Plotting Straight Line graphs

To plot a straight line graph, you may be given a table or you may need to draw one.

Plot the graph of $y = 4x - 2$ for the values of x from -3 to 3

1) Draw a table of values if you have not been given one

x	-3	-2	-1	0	1	2	3
y							

2) Substitute in your x values to $y = 4x - 2$, this will give the corresponding y values

x	-3	-2	-1	0	1	2	3
y	-14	-10	-6	-2	2	6	10

3) Plot the points on the graph.

E.g. (-3, -14), (-2, -10), (-1, -6), (0, -2), etc

Dr Frost Key Skills

- 267-Plotting a straight line from a table of values
- 268 -Relationship between a line and its equation
- 269 -x and y intercepts of the line
- 270A-L -Gradients of the line
- 273 -Drawing a line from its equation
- 274 -Equation of parallel lines
- 445a-c - Equations of perpendicular lines

Year 9 Forming and Solving Equations

Keywords

Inequality:

An inequality compares who values showing if one is greater than, less than or equal to another

Variable:

A quantity that may change within the context of the problem

Rearrange:

Change the order, making a variable the subject

Inverse operation:

The operation that reverses the action

Substitute:

Replace a variable with a numerical value

Solve:

find a numerical value that satisfies an equation

Expression:

A sentence in algebra that does **NOT** have an equals sign.

Expand

The process of multiplying each term in the bracket by the expression outside the bracket.

Dr Frost Key Skills

- 199- Solving linear equations where the variable appears on one side of the equation only
- 254- Solving linear equations including brackets
- 257- Solving linear equations where the variable appears on both sides of the equation
- 259- Forming and Solving linear equations from a given context (excluding angles)

Year 8

- Multiply out a single bracket
- Solve equations, including with brackets
- Form and solve equations with brackets
- Understand and Solve simple inequalities
- Solve equations and inequalities with unknowns on both side

Year 9

- One and two step equations and inequalities
- Equations and inequalities with brackets
- Solve equations and inequalities with unknowns on both sides
- Equations and inequalities in mathematical context

Learning Journey

Key Knowledge

Solve Two Step Equations & Inequalities

$$6y + 2 = 20$$

$$\begin{matrix} -2 & -2 \end{matrix}$$

Subtract first because the 2 is separate from y

$$6y = 18$$

$$\begin{matrix} \div 6 & \div 6 \end{matrix}$$

Divide because it is the inverse of multiplying

$$y = 3$$

$$\frac{w - 5}{3} < 6$$

$$\begin{matrix} x3 & x3 \end{matrix}$$

Multiply first because the entire expression is divided by 3

$$w - 5 < 18$$

$$\begin{matrix} +5 & +5 \end{matrix}$$

Add because it is the inverse of subtracting

$$w < 23$$

Solve with unknowns on both sides

$$5x - 20 > 3x + 4$$

$$\begin{matrix} -3x & -3x \end{matrix}$$

Subtract 3x from both sides because it is the smaller term of x

$$2x - 20 > 4$$

$$\begin{matrix} +20 & +20 \end{matrix}$$

Solve like a normal two step equation

$$2x > 24$$

$$\begin{matrix} \div 2 & \div 2 \end{matrix}$$

$$x > 12$$

Year 9 Testing Conjectures

Keywords

Multiples: found by multiplying any number by positive integers

Factor: Integers that multiply together to get another number.

Prime: An integer with only 2 factors.

HCF: highest common factor (biggest factor two or more numbers share)

LCM: Lowest common multiple (the first time the times table of two or more numbers match)

Verify: The process of making sure a solution is correct

Proof: Logical mathematical arguments used to show the truth of a statement

Binomial: A polynomial with two terms

Quadratic: A polynomial with four terms (often simplified to three terms)

Dr Frost Key Skills

96 HCF and LCM by listing

161 Prime Factorisation of a number

162 HCF and LCM by prime factorisation

252 Expanding a single Bracket

299 Expanding Two Brackets

300 Expanding Three Brackets

453 Testing Conjectures and counter examples

Year 7

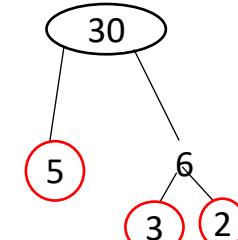
- LCM and HCF
- Prime Factor Decomposition
- Use a Venn diagram to calculate the HCF and LCM
- Make and test conjectures
- Use counter examples to disprove a conjecture

Year 8

- Multiply out a single bracket
- Expand a pair of binomials

Factors, multiples and primes
Expand a pair of binomials
Conjectures about number
Always, sometimes, never true
Explore the 100 grid

Learning Journey


Key Knowledge

Factors, Multiples and Prime

Once you have written as prime factors,
CIRCLE IT!

30 written as a product of prime factors

$$30 \equiv 5 \times 3 \times 2$$

HCF and LCM

Find the HCF between 72 and 36

72 1, 2, 3, 4, 6, 12, 24, 36, 72

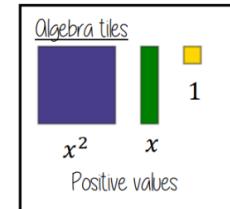
36 1, 2, 3, 4, 6, 9, 12, 36

Common Factors are factors two or more numbers share

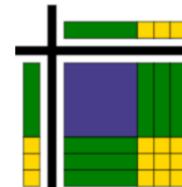
Find the LCM between 8 and 5

8 8, 16, 24, 32, 40, 48, 56, 64, 72, 80

Although both numbers have 80 too, this is **not** the **lowest common multiple!**


5 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80

Expanding Binomials


$$2(x + 2) \equiv 2x + 4$$

Algebra tiles can represent a binomial expansion
Has two terms

$$(x + 3)(x + 3) \equiv x^2 + 6x + 9$$

This is a quadratic
It has four terms
which simplified to three terms

Year 9 3D Shapes

Keywords

2D: Two dimensions to the shape e.g. length and width

3D: Three dimensions to the shape e.g. length, width and height.

Vertex: A point where two or more line segments meet.

Edge: A line on the boundary joining two vertex

Face: A flat surface on a solid object

Cross-section: A view inside a solid shape made by cutting through it

Plan: A drawing of something when drawn from above (sometimes birds eye view)

Surface Area: The surface area of a three-dimensional object is the total area of all its faces

Volume: The space occupied within the boundaries of an object in three-dimensional space

Nets: A pattern that can be cut and folded to make a model of a solid shape

Dr Frost Key skills

25 Introduction to 2D shapes

138 Area of Rectangle

139 Area of Parallelogram

140 Area of triangle

143 Nets of 3D shapes

209 Circumference of a circle

210 Area of a Circle

231 Volume of Prisms

232 Surface Area of cuboids and prisms

233 Volume of Cylinders

234 Surface Area of Cylinder

Year 7

Area of rectangles and parallelograms

Area of triangle

Solve problems using the area of trapezia

Year 8

Calculate the area of triangles, rectangles and parallelograms

Calculate the perimeter and area of compound shapes

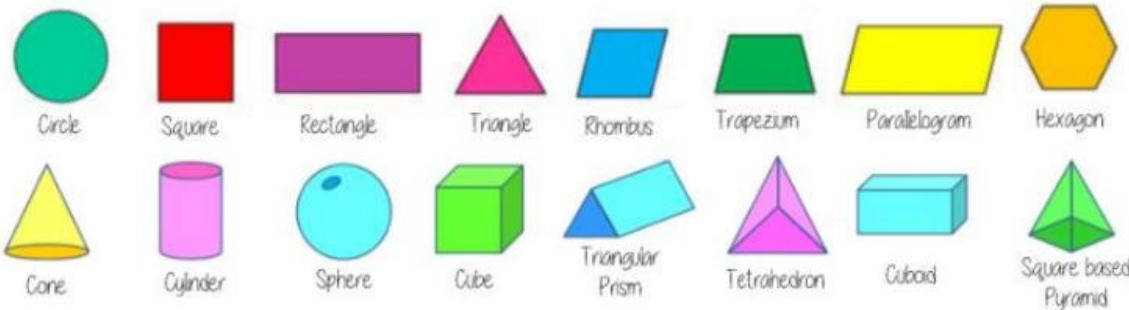
Calculate the area of a circle

Year 9

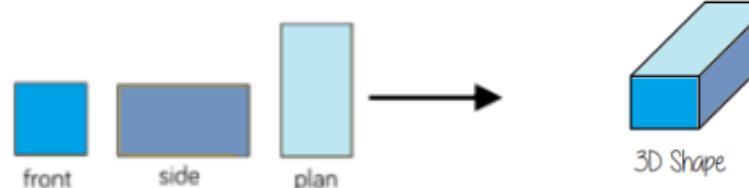
Know names of 2D and 3D shapes

Recognise prisms (including language of edges and vertices)

Plans and elevations

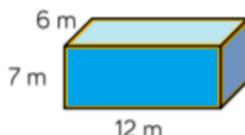

Find area of 2D shapes (R)

Surface area of cubes and cuboids, triangular prisms and cylinders

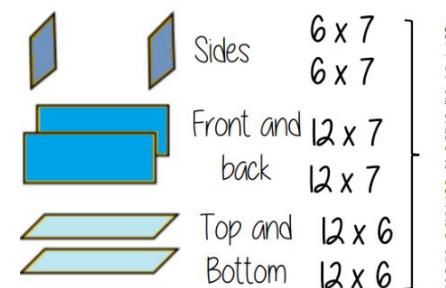

Volume of cubes and cuboids, prisms and cylinders

Key Knowledge

Name of 2D and 3D shapes



Plans and Elevation



The direction you are considering the shape from determines the front and side views.

Total Surface Area

Calculate the area of every single face

= 396cm²

Year 9 Numbers

Keywords

Integer: A whole number that is positive or negative

Rational: A number that can be made by dividing two integers

Irrational: A number that cannot be made by dividing two integers

Inverse operation: The operation that reverses the action

Quotient: The result of a division

Product: The result of a multiplication.

Multiples: Found by multiplying any number by positive integers

Factor: Integers that multiply together to get another number

Dr Frost Key skills

101 Converting between mixed fractions and improper fractions

117 Adding and subtracting fractions with any denominators

119 Multiply a fraction by an integer

155 Adding or subtracting a mixture of positive and negative numbers

156 Multiplying or dividing a mixture of positive and negative numbers

166 Dividing proper fractions

167 Multiply fractions involving a mixed number

168 Dividing fractions involving a mixed number

169 Fractional increase and decrease

170 Fractional original problems

171 Problem Solving involving a fraction of an amount

301 Conversion of large numbers to standard form

302 Conversion of small numbers to standard form

303 Adding or subtracting in standard form

304 Multiplying or Dividing in Standard form

Year 8

- Multiply a fraction by an integer
- Multiply and divide fractions with different denominators
- Multiply and divide improper and mixed fractions
- Work with numbers greater than 1 in standard form
- Investigate negative powers of 10
- Work with numbers between 0 and 1 in standard form
- Add and subtract numbers in standard form
- Multiply and divide numbers in standard form

Year 7

- Add Directed Numbers
- Subtract Directed Numbers
- Multiplication and Division of Directed Numbers
- Use order of operations with Directed Numbers
- Add and Subtract Fractions with the same denominator
- Add and Subtract Fractions with any denominators
- Add and subtract improper fractions and mixed numbers

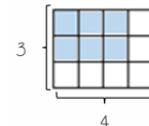
Key Knowledge

Four Operations with Fractions

Adding and Subtracting

Find the lowest common multiple for both denominators

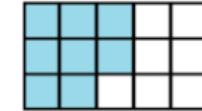
Calculate


$$\frac{4}{5} - \frac{2}{3} = \frac{4 \times 3}{5 \times 3} - \frac{2 \times 5}{3 \times 5} = \frac{12}{15} - \frac{10}{15} = \frac{2}{15}$$

Multiplying Fractions

Calculate

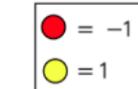
$$\frac{3}{4} \times \frac{2}{3} = \frac{3 \times 2}{4 \times 3} = \frac{6}{12} = \frac{1}{2}$$



Dividing fractions

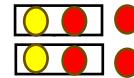
Calculate

$$\frac{2}{5} \div \frac{3}{4} = \frac{2}{5} \times \frac{4}{3} = \frac{8}{15}$$


Represented

Multiplication

$$-2 \times -3 = 6$$

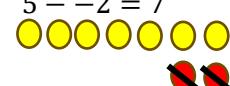


The act of making counters into their negative is turning them over

Addition

Directed numbers

$$2 + -4 = -2$$



Generalisation

$$+ - = -$$

Subtraction

$$5 - -2 = 7$$

Generalisation

$$- - = +$$

We need to draw 2 sets of zero pairs before so we can take away 2 red counters

Divisions are the inverse operations

Year 9**Using Percentages****Keywords****Compound interest:**

Calculating interest on both the amount plus previous interest

Simple interest:

The amount of interest is fixed over period.

Depreciation: A decrease in the value of something over time.

Growth:

Where a value increases in proportion to its current value such as doubling.

Decay:

The process of reducing an amount by a consistent percentage rate over time.

Decimal Multiplier:

This is equivalent of the percentage.

Equivalent:

Of equal value.

Year 9

Calculate percentage increase and decrease

Express a change as a percentage

Solve reverse percentage problems

Solve problems with repeated percentage change (H)

Calculate simple interest

Calculate compound interest

Solve problems with Value Added Tax

Year 10

Repeated percentage change

Solve problems involving growth and decay

Calculate simple and compound interest

Key KnowledgePercentage of an amount (Non-Calculator)

To calculate any percentage, it is useful to start with 10%

$$30\% \text{ of } 120: 10\% = 120 \div 10 = 12 \quad \text{To find 10% we divide by 10.}$$

$$30\% = 3 \times 12 = 36 \quad \text{To find 30% we multiply 10% by 3.}$$

Percentage of an amount (Calculator)

To calculate any percentage, we will use a decimal multiplier.

$$83\% \text{ of } 120: 83\% = 0.83$$

Change the percentage to a decimal multiplier and then multiply

$$83\% \text{ of } 120 = 0.83 \times 120 = 99.6$$

Percentage Increase and Decrease (Non-Calculator)**Increase:**

To calculate a percentage increase we calculate the percentage and add the value on to the original amount

Increase 70 by 65%

$$10\% = 70 \div 10 = 7$$

$$5\% = 7 \div 2 = 3.5$$

$$60\% = 6 \times 7 = 42$$

$$65\% = 60\% + 5\% = 42 + 3.5 = 45.5$$

$$70 + 45.5 = 115.5$$

Percentage Increase and Decrease (Calculator)**Increase:**

To calculate a percentage increase, calculate 65% using the decimal multiplier and add it on

Increase 70 by 65%

$$65\% \text{ of } 70$$

$$65\% = 0.65$$

$$65\% \text{ of } 70 = 0.65 \times 70 = 45.5$$

$$70 + 45.5 = 115.5$$

Dr Frost's Key Skills

130 Calculate a simple percentage of an amount using chunking

214 Determine what percentage one number is of another

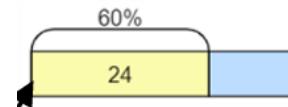
215 Percentage Change

219 Percentage of amount, using a decimal multiplier (Simple Interest)

222 Reverse Percentage problems

223 Reverse Percentage Problems using Decimal multipliers

359 Calculating values after compound percentage changes


Finding the original amount

In a test Lucy scored 60% of her questions correctly.

Her score was 24.

How many questions were on the test?

Always draw a bar model to illustrate the question

$$\begin{aligned} 60\% &= 24 \\ \div 60 & \\ 1\% &= 0.4 \\ \times 100 & \\ 100\% &= 40 \end{aligned}$$

Total questions on test

Year 9 Deduction

Keywords

Parallel: Two straight lines that never meet with the same gradient.

Perpendicular: Two straight lines that meet at 90°

Transversal: A line that crosses at least two other lines.

Sum: The result of adding two or more numbers.

Conjecture: A statement that might be true but is not proven.

Equation: A statement that says two things are equal

Polygon: A 2D shape made from straight edges.

Counterexample: an example that disproves a statement

Dr Frost Key Skills

110 Sum of the angles on a straight line and around a point

147 Vertically opposite angles

149 Sum of angles in a triangle

150 Angles in Isosceles triangle

151 Sum of Angles in a quadrilateral

262 Alternate, corresponding or co-interior angles

263 Determine Algebraic expressions and equations using angle facts

Year 9

Basic Angle Facts

Angle Facts with Algebra

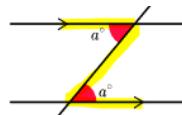
Angles in Parallel Lines

Angles in Parallel lines with Algebra

Learning Journey

Key Knowledge

Key angle facts


Angles on a Straight Line

180°

Quadrilateral

360°

Angles around a point

360°

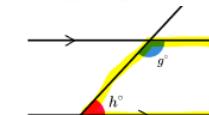
Alternate Angles are **Equal**

w°

w°

Triangle

180°



Corresponding Angles are **Equal**

w°

Vertically Opposite Angles

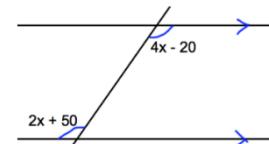
Vertically Opposite Angles are **Equal**

Co-interior angles **sum up to 180**

Solving angle problems

Link facts to algebra

Form an Equation


State the reason

Solve

$$2x + 4x = 180^\circ$$

Angles on a straight line sum up to 180

$$4x - 20 = 2x + 50$$

Alternate angles are equal

$$4x - 20 = 2x + 50$$

$+20 \quad +20$

$$4x = 2x + 70$$

$-2x \quad -2x$

$$2x = 70$$

$\div 2 \quad \div 2$

$$x = 35$$

Year 9 Rotation and Translation

Keywords

Reflection- This is a type of transformation that flips a shape in a mirror line.

Rotation-Rotation are transformation that turn a shape around a fixed point.

Translation- This is a type of transformation that moves a shape left or right or up and down

Clockwise- A term used to describe the motion that proceeds within the same direction as that of a clock's hands.

Anti-Clockwise- A term used to describe a turn to the left, in the opposite direction of a clock

Enlargement- This is a type of transformation that makes a shape bigger or smaller using the centre of enlargement

Year 9

Identify the order of rotational symmetry of a shape

Reflecting in a straight line

Translating a Shape

Describing Translation

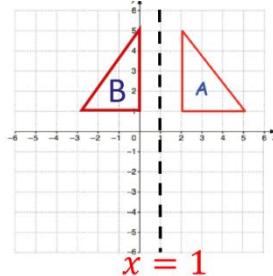
Describing Rotations

Describing Reflections

Series of Transformation

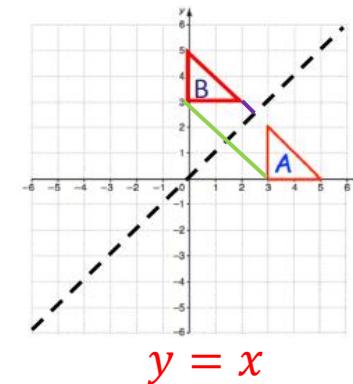
Learning Journey

Dr Frost Key Skills


- 279 Describing a Reflection
- 280 Rotational Symmetry
- 282 Describing a Rotation
- 294 Describing an Enlargement for a positive integer scale factor
- 295 Enlarging a shape using a positive scale factor
- 296 Enlarging a shape using a fractional scale factor
- 374 Translations of shapes by a vector
- 375 Describing translations using vector notation

Key Knowledge

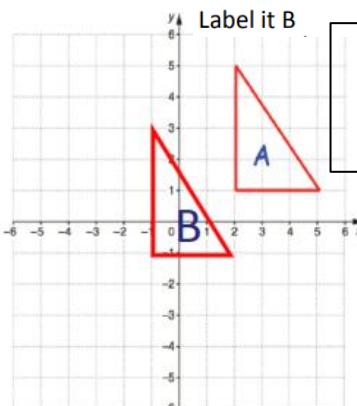
Reflection


Reflect Shape A in the line $X = 1$.

Label it B

For each vertices in Shape A, count how many squares it is away from the mirror line and reflect it.

You should do this for all vertices!

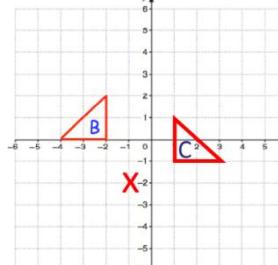


$y = x$

Translation

Translate shape A by $(-3, -2)$.

Label it B


This tells us that each vertices from Shape A has moved 3 to the left and move 2 down

Steps

- 1) Use a tracing paper and outline Shape B
- 2) Draw a Arrow facing North on top of the tracing paper
- 3) Rotate the tracing paper about the centre of enlargement.

Rotation

Rotate shape B from the point $(-1, -2)$

Make sure you hold down the tracing paper

Year 9 Rates

Keywords

Speed: A measure of how fast something is moving or the rate at which distance is covered in a given time

Distance: A measurement of how far something is

Density: Refers to the measure of how tightly packed a substance or object is.

Mass: The mass of an object tells you how heavy something is. This is usually measured in **grams (g)** and kilograms (**kg**)

Volume: This is the amount of space occupied by a solid, liquid or a shape. This is usually measured in cm^3 or m^3

Time: How long something takes and this could be measured using seconds, minutes, hours or days.

Year 9

- Metric Conversions
- Speed, Distance and Time
- Combining Speed Distance and Time
- Distance Time graphs
- Velocity Time graphs
- Density, mass and volume
- Dual Density
- Capacity and Flow
- Converting compound units

Learning Journey

Key Knowledge

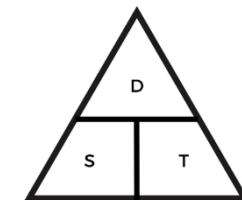
Calculating Distance

Iain walked from his parents' farm into town at a steady speed of $5km/h$.

Speed

The journey took 3 hours . How far did Iain walk?

Time


$$\text{Distance} = \text{Time} \times \text{Speed}$$
$$3 \times 5 = 15\text{km}$$

The word far is associated with distance

$$\text{speed} = \text{distance} \div \text{time}$$

$$\text{distance} = \text{speed} \times \text{time}$$

$$\text{time} = \text{distance} \div \text{speed}$$

Calculating Speed

Alan travels 100km in 5hrs .

Find his average speed in km/h .

$$\text{Speed} = \text{Distance} \div \text{Time}$$

$$100 \div 5 = 20\text{km/h}$$

Calculating Time

Joanna drives for 400km at an average speed of 80km/h .

How long was her journey?

$$\text{Time} = \text{Distance} \div \text{Speed}$$

$$400 \div 80 = 5\text{ hours}$$

Dr Frost Key Skills

325 Speed Calculations from a journey

326 Speed Calculations from multiple journeys or a journey in stages

327 Constructing and reading distance time graphs

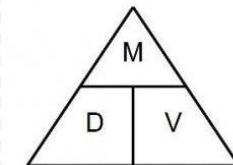
328 Density

459 Understanding and drawing speed time graphs

Calculating Density, Mass and Volume

Calculating Mass

The density of air is 1.3 kg/m^3 . Calculate the mass of a balloon which holds 0.0035 m^3 of air.


$$\text{Mass} = \text{Density} \times \text{volume}$$

$$1.3 \times 0.0035 = 0.00455\text{kg}$$

$$\text{Mass} = \text{Density} \times \text{volume}$$

$$\text{Density} = \text{Mass} \div \text{volume}$$

$$\text{Volume} = \text{Mass} \div \text{Density}$$

Year 9 Probability

Keywords

Probability:

This tells us how likely something is to happen. This can be shown as decimals, percentages or fractions.

Event: One or more outcomes from an experiment

Intersection: Elements that are common to both sets

Union: The combination of elements in two sets

Product: The answer when two or more values are multiplied together

Mutually Exclusive: Two events are mutually exclusive if they cannot happen simultaneously

Independent Event: One event does not affect the probability of the other.

Example – Flipping heads on a coin has no effect on rolling a 3 on a dice

Dependent events: One outcome affects another Example – choosing one red card reduces the chance of choosing another red card

Dr Frost Key Skills

247 Probabilities using worded terms

248 Theoretical probabilities using counts

249 Sample Space Diagram

250 Probability of mutually exclusive events

251 Experimental probabilities

353 Probabilities of independent events

354 Probability of dependent events

355 and 356 Probabilities from Venn diagram (Using Venn notation)

Year 8

Find probabilities from a sample space

Find probabilities from two-way tables

Find probabilities from Venn diagrams

Year 9

Single event probability

Relative frequency - including convergence

Expected outcomes

Independent events

Use tree diagrams

Use tree diagrams to solve without replacement problems

Year 10

Find probabilities using equally likely outcomes

Use the property that probabilities sum to 1

Using experimental data to estimate probabilities

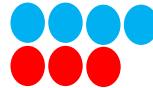
Find probabilities from tables, Venn diagrams and frequency trees

Construct and interpret sample spaces for more than one event

Calculate probability with independent events

Use tree diagrams for independent events

Use tree diagrams for dependent events


Construct and interpret conditional probabilities (tree diagrams)

Learning Journey

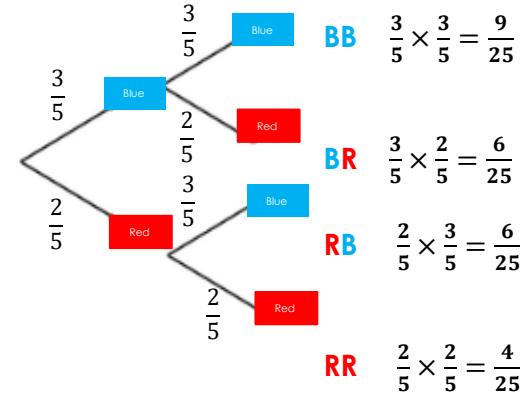
Key Knowledge

Sum to 1

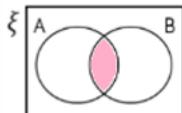
Probabilities is always a value between 0 and 1

The probability of selecting a **blue counter** is $\frac{3}{5}$

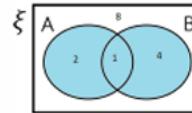
The probability of selecting a **red counter** is $\frac{2}{5}$


Tree Diagram for independent events

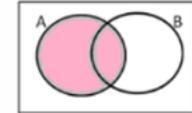
Isabel has a bag with 3 blue counters and 2 red counters. She picks a counter and replaces it before the second pick.


Draw a tree diagram to represent this event.

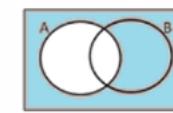
Because they are replaced the second pick has the same probability.



Venn diagram


in set **A** AND set **B**

$$P(A \cap B)$$


in set **A** OR set **B**

$$P(A \cup B)$$

in set **A**

$$P(A)$$

NOT in set **A**

$$P(A')$$

Year 9

Algebraic Representation

Keywords

Quadratic: An equation where the highest exponent of the variable is a square

Simultaneous Equations: An equation involving two or more unknowns that have the same values in each equation

Substitution: The process of replacing a variable (a letter representing an unknown number) with a specific value or another expression within an equation or expression

Inequalities: An inequality compares two values, showing if one is less than, greater than, or simply not equal to another value

Intersect: This can be described as a point where two lines cross

Parallel: Straight lines that never intersect

Perpendicular: Straight lines that intersect and meet at right angles

Turning Points: A point on a curve where the gradient (or slope) changes direction

Dr Frost Key Skills

275 Solving Linear Equations using Graphical Methods

276 Solving Linear Equations using Elimination or Substitution

366 Plotting Quadratic graphs from a table of values

368 Quadratic Graphs and their features

419 Solve Non-Linear Equations by Substitution

Year 9

Drawing Quadratic Graphs
Interpreting Quadratic Graphs
Solving Simultaneous Equations
Solving Simultaneous Equations Graphically
Inequalities on a number line
Solving Inequalities Graphically

Learning Journey

Key Knowledge

Two Linear Equations (Elimination)

$$\begin{array}{r} 3x + 2y = 18 \\ 3x - y = 9 \\ \hline \end{array}$$

x 2

Both unknowns have different coefficients, thus one or both equations **must** be multiplied to create a common coefficient.

SSS- Same Sign Subtract
DSA- Different Sign Add

$$\begin{array}{r} 3x + 2y = 18 \\ + 6x - 2y = 18 \\ \hline \end{array}$$

$$\begin{array}{r} 9x = 36 \\ x = 4 \end{array}$$

Substitute x = 4 into **an** original equation

$$\begin{array}{r} 3x + 2y = 18 \\ 3(4) + 2y = 18 \\ 12 + 2y = 18 \\ 2y = 6 \\ y = 3 \end{array}$$

$$\begin{array}{r} 1 \quad y = 2x \\ 2 \quad x + y = 6 \\ \hline \end{array}$$

- 1) Label the equations 1 and 2
- 2) Substitute what you know to the other equation and solve
- 3) Substitute your answer to work out the other unknown

$$\begin{array}{r} x + 2x = 6 \\ 3x = 6 \\ x = 2 \end{array}$$