

Year 8

- Understand and use ratio notation
- Solve problems involving ratios of the form $1 : n$
- Divide in a given ratio
- Express ratios in their simplest integer form

Keywords

Ratio: a statement of how two numbers compare

Equal Parts: all parts in the same proportion, or a whole shared equally

Proportion: a statement that links two ratios

Order: to place a number in a determined sequence

Part: a section of a whole

Equivalent: of equal value

Factors: integers that multiply together to get the original value

Scale: the comparison of something drawn to its actual size

Dr Frost Key Skills

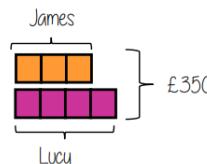
224a-j – Simplifying ratios and forming ratios from a given context

227a-j -Combining ratios and proportions into a single ratio

Key Knowledge

Simplifying ratios

$$\begin{array}{r} 8 : 64 \\ \div 8 \qquad \qquad \qquad \div 8 \\ 1 : 8 \end{array}$$


Find the **Highest common factor** that goes into all parts of the ratio

Sharing a whole into a given ratio

James and Lucy share £350 money in the ratio 3 : 4.

Work out how much each person earns

1) Model the question

2) Find the value of one part

$$\text{£350} \div 7 = \text{£50}$$

= one part
= £50

3) Put back into question

$$\begin{array}{l} \text{James} = 3 \times \text{£50} = \text{£150} \\ \text{Lucy} = 4 \times \text{£50} = \text{£200} \end{array}$$

Find one share of a ratio given another

Juice is made from cordial and water in the ratio 2 : 5

Kevin has 250 ml of water, how much cordial should he add to make the juice?
Cordial : Water

$$\begin{array}{r} 2 : 5 \\ \times 50 \qquad \qquad \qquad \times 50 \\ 100 : 250 \end{array}$$

Keywords

Direct Proportion: A relationship between two quantities such that as one increases, the other increase

Variable: A part that the value can be changed

Axes: Horizontal and vertical lines that a graph is plotted around

Approximation: An estimate for a value

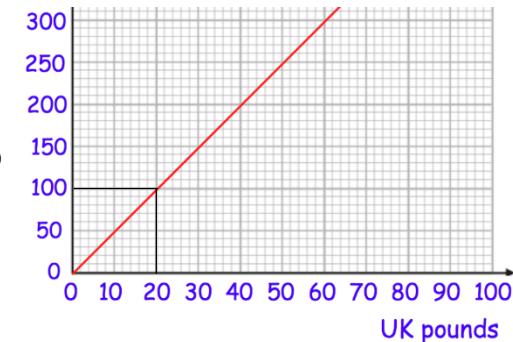
Scale Factor: The multiple that increases/ decreases a shape in size

Currency: The system of money used in a particular country

Conversion: The process of changing one variable to another.

Scale: The comparison of something drawn to its actual size

Exchange Rate: The value of one currency for the purpose of conversion to another.


Year 8

- Understand and use ratio notation
- Solve problems involving ratios of the form $1:n$
- Divide in a given ratio
- Express ratios in their simplest integer form

Learning Journey**Using Conversion Graphs**

What is £20 worth in Hong Kong Dollars?

100 HKD

Key Knowledge**Direct Proportion**

5 apples cost £1.50.

What is the cost of 12 apples?

Apples	Cost (£)
5	£1.50
1	£0.30
12	£3.60

Always work out what one unit is

÷ 5 ÷ 5 HKD

× 12 × 12

Currency Conversion

Katie is going on holiday to Poland.

The exchange rate is £3 = 6 Zloty

How much Zloty would Katie get if she exchanged £110?

£	Zloty
£3	6 Zloty
£1	2 Zloty
£110	£220

Always write down what you know

÷ 3 ÷ 3

× 110 × 110

Currency Conversion

Katie is coming back to the UK

The exchange rate is £3 = 6 Zloty

How much Pounds would Katie get back if she exchanged 400 Zloty?

£	Zloty
£3	6 Zloty
£1	2 Zloty
£200	£400

÷ 3 ÷ 3

× 200 × 200

Dr Frost Key Skills

177 Exchange Rates

176 Multiplicative Scaling and Numerical proportion and best value problems

178 Conversion Graphs

283 Scale Drawings including map scales

Keywords

Numerator : The number above the line on a fraction. The top number represents how many parts are taken

Denominator: The number below the line on a fraction. The number represent the total number of parts..

Whole: A positive number including zero without any decimal or fractional parts.

Commutative: An operation is commutative if changing the order does not change the result.

Unit Fraction: A fraction where the numerator is one and denominator a positive integer.

Non-unit Fraction: A fraction where the numerator is larger than one.

Dividend : The amount you want to divide up.

Divisor: The number that divides another number.

Reciprocal: A pair of numbers that multiply together to give 1.

Dr Frost Key Skills

119 Multiplying Fractions and Mixed numbers by an integer

120 Multiplying Proper Fractions with no Simplifying

121 Dividing Fractions by Integers

165 Dividing Proper Fractions

165 Multiplying Proper Fractions

167, 168 Multiplying and Dividing involving a mixed number

Year 8

Multiply a fraction by an integer

Find the product of a pair of unit fractions

Find the product of a pair of any fractions

Divide an integer by a fraction

Divide a fraction by a unit fraction

Understand and use the reciprocal

Divide any pair of fractions

Multiply and divide improper and mixed fractions

Key KnowledgeMultiplying non-unit fractions

$$\frac{3}{4} \times \frac{2}{3} = \frac{3 \times 2}{4 \times 3} = \frac{6}{12} = \frac{1}{2}$$

Parts Shaded

Simplify your answer if possible!

Finding Reciprocals

When you multiply a number by its reciprocal the answer is always 1

The reciprocal of 3 is $\frac{1}{3}$

$$3 \times \frac{1}{3} = 1$$

The reciprocal of $\frac{2}{5}$ is $\frac{5}{2}$

$$\frac{2}{5} \times \frac{5}{2} = 1$$

Dividing any fractions

To divide a fraction by a fraction.

We multiply the first fraction with the reciprocal of the second fraction.

$$\frac{3}{4} \div \frac{1}{3} = \frac{3}{4} \times \frac{3}{1} = \frac{3 \times 3}{4 \times 1} = \frac{9}{4} = 2\frac{1}{4}$$

Total number of parts in the diagram

Change your answer to a mixed number if asked!

Keywords

Relationship: The link between two variables (items). E.g. Between sunny days and ice cream sales

Correlation: The mathematical definition for the type of relationship.

Origin: Where two axes meet on a graph.

Line of best fit: A straight line on a graph that represents the data on a scatter graph.

Outlier: A point that lies outside the trend of graph.

Quantitative: Numerical data

Qualitative: Descriptive information, colours, genders, names, emotions etc.

Continuous: Quantitative data that has an infinite number of possible values within its range.

Discrete: Quantitative or qualitative data that only takes certain values.

Frequency: The number of times a particular data value occurs.

Interpolation: This is where you use the line of best fit to estimate values inside our data point

Extrapolation - This is where we use our line of best fit to predict information outside of our data

Year 7

Calculate the probability of single events

Year 8

Draw and interpret scatter graphs

Draw and use line of best fit

Identify different types of data

Read and interpret grouped frequency tables

Read and interpret ungrouped frequency tables

Construct and Interpret Two Way tables

Key Knowledge**Two-way tables**

Two-way tables can be used to represent discrete information in a visual way that allows you to make conclusions, find probability or find totals of subgroups.

There are 2 green rectangles

	Rectangles	Circles	Total
Green	2	1	3
Blue	2	2	4
Total	4	3	7

Using your Two-way tables

We could use the Two-way tables to calculate probabilities?

a) What fraction of the items are **green**?

We have 3 green items but 7 in total = $\frac{3}{7}$

Make sure you have read the question!

There are 7 total shapes

b) What fraction of the **rectangles** are **green**?

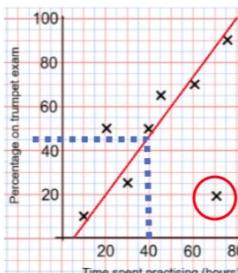
We have 2 green rectangles but 4 rectangles in total = $\frac{2}{4}$

Dr Frost Key Skills

27 Reading values from a table of discrete or categorial data

235 Reading and Interpreting ungrouped frequency table

238 Two-Way Tables


244 Scatter Graphs

245 Line of Best Fit

248e Determine a probability using a Two-Way table

Line of Best Fit

When drawing a **line of best fit**, draw a line that roughly goes through the middle of all the scatter points on the data

This point is an outlier because it stands apart from the data.

Keywords**Gradient:**

The steepness of a line

Intercept:

This is where two lines cross

The y-intercept:

This is where the line meets the y-axis

Parallel:

Two lines that never meet with the same gradient

Co-ordinate:

A set of values that show an exact position on a graph

Substitute:

When a letter is replaced by a number

Reciprocal:

A pair of numbers that multiply together to give 1

Perpendicular:

Two lines that meet at a right angle. The gradients multiplied equals to -1

Coefficient:

A number or quantity placed with a variable.

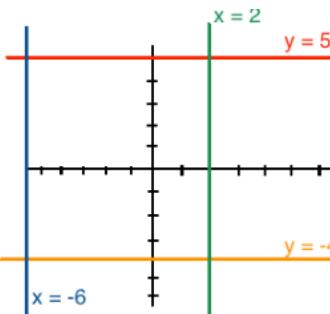
Dr Frost Key Skills

267-Plotting a straight line from a table of values

268 -Relationship between a line and its equation

269 -x and y intercepts of the line

270A-L -Gradients of the line


273 -Drawing a line from its equation

274 -Equation of parallel lines

445a-c – Equations of perpendicular lines

Year 8

- Generate sequences given a rule in words
- Generate sequences given a simple algebraic rule
- Generate sequences given a complex algebraic rule
- Find the rule for the nth term of a linear sequence

Key KnowledgeLines parallel to the axis

Lines parallel to the **y** axis take the form $x = a$ and are vertical

Lines parallel to the **x** axis take the form $y = a$ and are horizontal

$$y = mx + c$$

The coefficient of x (the number in front of x) tells us the **gradient** of the line

$y = mx + c$

Y and x are **coordinates**

The value of c is the point at which the line crosses the **y-axis**.
y intercept

Plotting Straight Line graphs

To plot a straight line graph, you may be given a table or you may need to draw one.

Plot the graph of $y = 4x - 2$ for the values of x from -3 to 3

- 1) Draw a table of values if you have not been given one

x	-3	-2	-1	0	1	2	3
y							

- 2) Substitute in your x values to $y = 4x - 2$, this will give the corresponding y values

x	-3	-2	-1	0	1	2	3
y	-14	-10	-6	-2	2	6	10

- 3) Plot the points on the graph.

E.g. (-3, -14), (-2, -10), (-1, -6), (0, -2), etc

Keywords

Outcomes: The result of an event that depends on probability.

Probability: The chance that something will happen.

Set: A collection of objects.

Chance: The likelihood of a particular outcome.

Event: The outcome of a probability – a set of possible outcomes.

Biased: A built-in error that makes all values wrong by a certain amount.

Union: Notation 'u' meaning the set made by comparing the elements of two sets.

Sample Space: This a collection or a set of possible outcomes of a random experiment.

Dr Frost Key Skills

355 Probabilities from Venn Diagram

356 Probabilities from Venn Diagram using Set notation

242 Construct a Venn Diagram

243 Union, Intersection and sets

249 Sample Space Diagrams

Year 7

Interpret and create Venn diagrams
Understand and use the intersection of sets
Understand and use the union of sets
Generate sample spaces for single events
Calculate the probability of a single event
Understand and use the complement of a set (H)

Year 8

Construct sample spaces for one or more events
Find probabilities from a sample space
Find probabilities from two-way tables
Find probabilities from Venn diagrams
Use the product rule for finding the total number of possible outcomes

Learning Journey

Key Knowledge

Construct Sample Space Diagrams

Sample space diagrams provide a systematic way to display outcomes from events

The possible outcomes from rolling a dice						
The possible outcomes from tossing a coin		1	2	3	4	5
H	1H	2H	3H	4H	5H	6H
T	1T	2T	3T	4T	5T	6T

This is the set notation to list the outcomes S =

$$S = \{ 1H, 2H, 3H, 4H, 5H, 6H, 1T, 2T, 3T, 4T, 5T, 6T \}$$

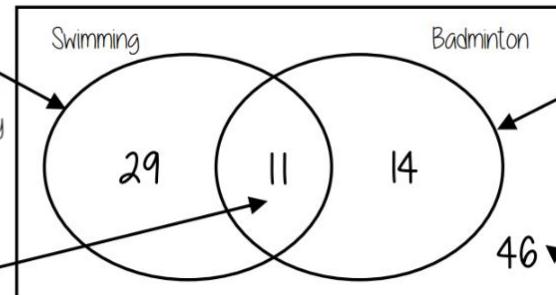
In between the {} are a; the possible outcomes

What is the probability that an outcome has an even number and a tails?

$$P(\text{Even Number and Tails}) = \frac{3}{12}$$

Probability from Venn Diagram

100 students were questioned if they played badminton or went to swimming club.


40 went swimming.

25 went to badminton and 11 went to both.

This whole curve includes everyone that went swimming

Because 11 did both we calculate just swimming by $40 - 11$

The intersection represents both Swimming AND badminton

This whole curve includes everyone that went to badminton

Because 11 did both we calculate just badminton by $25 - 11$

The number outside represents those that did neither badminton or swimming

Year 8 Sequences

Keywords

Sequence: Items or numbers put in a pre-decided order

Term: A single number or variable

Position: The place something is located

Linear: The difference between terms increases or decreases (+ or -) by a constant value each time

Non-linear: The difference between terms increases or decreases in different amounts, or by x or \div

Difference: The gap between two terms

Arithmetic: A sequence where the difference between the terms is constant

Geometric: Sequence where each term is found by multiplying the previous one by a fixed nonzero number

Nth term

A rule to a sequence of numbers. The n stands for the term number

Fibonacci Sequence

A sequence in which each number is the sum of the two preceding ones.

Dr Frost Key Skills

202 Distinguishing between different types of sequences

203 Describing, generating and continuing sequences using term to term rule

204 Generating terms of a sequence given a position-to-term rule.

205 n th term formula for an arithmetic sequence

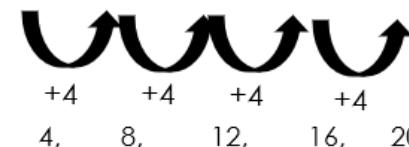
206 Determining if a term belongs in an arithmetic sequence

Learning Journey

Year 7

Describe and continue sequences
Predict and check next term(s)
Linear and non-linear sequences
Continue linear sequences
Continue non-linear sequences
Explain the term-to-term rule
Find missing terms (H)

Year 8


Generate sequences given a rule in words
Generate sequences give a simple algebraic rule
Generate sequences given a complex algebraic rule
Find the rule for the n th term of a linear sequence

Key Knowledge

Find the n th term

Find the n th term for the following sequence 3, 7, 11, 15, 19

3, 7, 11, 15, 19

4n - 1

This is the constant difference between the terms in the sequence.

This has the same constant difference—but is 1 less than the original sequence

This is the difference between the original and new sequence

Finding terms using the n th term

2n - 1

e.g.

$$1^{\text{st}} \text{ term} = 2(1) - 1 = 1$$

$$50^{\text{th}} \text{ term} = 2(50) - 1 = 99$$

$$100^{\text{th}} \text{ term} = 2(100) - 1 = 199$$

Substitute the number of the term you are looking for in place of n

Keywords

Simplify: Grouping and combining similar terms

Substitute: Replace a variable with a numerical value

Equivalent: Something of equal value

Coefficient: A number used to multiply a variable

Product: It is the result of multiplying two or more terms together

Highest Common Factor (HCF): This is the largest whole number which is shared by given numbers.

Factorise: Finding what to multiply to get an expression.

Expand: Multiply each term in the bracket by the expression outside the bracket.

Dr Frost Key Skills

252 Expanding a single bracket

299 Expanding two Brackets

199 Solving linear equations

200 Solving equations with powers and roots

254 Solving Linear equations with brackets

257 Solving linear equations where unknowns on both sides

259 Forming and solving equation

253 Factorise out a single term

339 Solving linear inequalities

340 Solving inequalities where unknowns on both side

342 forming and solving inequalities

Year 8

Form algebraic expressions

Multiply out a single bracket

Factorise into a single bracket

Expand multiple single brackets and simplify

Expand a pair of binomials

Solve equations, including with brackets

Form and solve equations with brackets

Understand and solve simple inequalities

Solve equations and inequalities with unknowns on both sides (H)

Form and solve equations and inequalities with unknowns on both sides

Year 7

Solve two-step equations

Introduction to two-step equations

Solve one-step linear equations involving +/- using inverse operations

Solve one-step linear equations involving x/÷ using inverse operations

Learning JourneyDirected numbers

$$++ \rightarrow +$$

$$-- \rightarrow +$$

$$+- \rightarrow -$$

$$-+ \rightarrow -$$

e.g.

$$a = -5 \text{ and } b = 2$$

$$a^2 = a \times a = -5 \times -5 = 25$$

$$b + a = 2 + -5 = -3$$

Multiply Single Brackets

Expand $3(2x + 4)$

	2x	4
3	$3 \times 2x = 6x$	$3 \times 4 = 12$

Multiply the terms inside the bracket with the term on the outside.

$$6x + 12$$

$$3(2x + 4) = 6x + 12$$

Factorise into single brackets

Factorise

$$14 - 7y$$

1) Find the highest common factor of each of the terms in the expression

Factors of 14:

1, 14, 2, 7

Factors of 7:

1, 7

2) Write the highest common factor (HCF) in front of the bracket

$$7(\quad - \quad)$$

3) Fill in each term in the bracket by multiplying out.

$$7(2 \quad - \quad y)$$

What do I need to multiply 7 by to give 14?

What do I need to multiply 7 by to give me 7y?

Fully Factorise

$$18x^2 + 12x$$

1) Find the highest common factor of each of the terms in the expression

Factors of 18:

1, 18, 2, 9, 3, 6

Factors of 12:

1, 12, 2, 6, 3, 4

2) Write the highest common factor (HCF) in front of the bracket (**Both terms has an x variable**)

$$6x(\quad - \quad)$$

3) Fill in each term in the bracket by multiplying out.

$$6x(3x + 2)$$

Year 8 Indices

Learning Journey

Keywords

Base: The number that gets multiplied by a power

Power: The exponent – or the number that tells you how many times to use the number in multiplication

Indices: The power

Coefficient: The number used to multiply a variable

Simplify: To reduce a power to its lowest term

Product: Multiply

Cube: A cube number is the result of multiplying a number by itself twice.

Expression : An expression is a combination of numbers, variables, functions (such as addition, subtraction, multiplication or division etc.)

Year 7

Understand the meaning of like and unlike terms

Simplify algebraic expressions by collecting like terms using the \equiv symbol

Year 8

Adding and Subtracting with Indices

Simplifying Algebraic expressions by multiplying indices

Simplifying Algebraic expressions by dividing indices

Using the addition law for indices

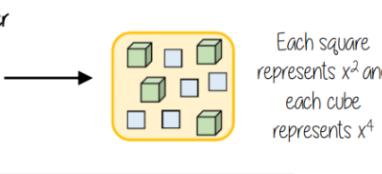
Using the addition and subtraction law for indices

Exploring powers of powers (H)

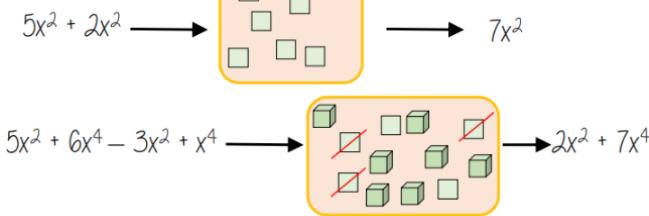
Dr Frost Key Skills

88 Power notation and Calculate Simple Powers

157 Roots and Further Powers


158 Numerical Index Laws

194 Algebraic Index Laws


Key Knowledge

Addition and subtraction with indices

Coefficient
 $5x^2 + 4x^4$
Term Term
Expression

Only similar terms can be simplified
If they have different powers, they are unlike terms

Multiplication and Dividing with Indices

Multiplication Law:

When multiplying with the same base, **we add the powers.**

$$a^m \times a^n = a^{m+n}$$

Examples

$$2^5 \times 2^7 = 2^{12}$$

$$a^3 \times a^5 = a^8$$

Division law:

When dividing with the same base (number/letter) **we subtract the powers.**

$$a^m \div a^n = a^{m-n}$$

Examples

$$2^{14} \div 2^9 = 2^5$$

$$a^3 \div a^5 = a^{-2}$$

Year 8**Fractions and Percentages****Keywords**

Percent: Parts per 100 – Written using the % symbol.

Decimal: A number that consists of a whole and a fractional part

Fraction: A fraction represents how many parts of a whole value you have.

Equivalent: Of equal value.

Reduce: To make smaller in value.

Growth: To increase/ to grow.

Integer:

Whole number, can be positive, negative or zero.

Invest:

Putting money into something to earn a financial gain.

Profit:

Money that is earned in a trade after paying the costs of producing and selling the goods

Year 7

Understand the meaning of percentage using a hundred square

Convert fluently between simple fractions, decimals and percentages

Percentages of amounts using proportion method

Year 8

Percentage of an amount

Convert fluently between key fractions decimals and percentages

Calculate key fractions, decimals and percentages of an amount without a calculator

Calculate percentage increase and decrease using a multiplier

Express one number as a fraction or a percentage of another without a calculator

Work with percentage change

Find the original amount given the percentage less than 100%

Find the original amount given the percentage greater than 100%

Learning Journey**Key Knowledge****Percentage of an amount (Non-Calculator)**

To calculate any percentage, it is useful to start with 10%

$$30\% \text{ of } 120: 10\% = 120 \div 10 = 12 \quad \text{To find } 10\% \text{ we divide by 10.}$$

$$30\% = 3 \times 12 = 36 \quad \text{To find } 30\% \text{ we multiply } 10\% \text{ by 3.}$$

Percentage of an amount (Calculator)

To calculate any percentage, we will use a decimal multiplier.

$$83\% \text{ of } 120: \quad 83\% = 0.83$$

Change the percentage to a decimal multiplier and then multiply

$$83\% \text{ of } 120 = 0.83 \times 120 = 99.6$$

Percentage Increase and Decrease (Non-Calculator)**Increase:**

To calculate a percentage increase, we calculate the percentage and add the value on to the original amount

Increase 70 by 65%

$$10\% = 70 \div 10 = 7 \quad 5\% = 7 \div 2 = 3.5$$

$$60\% = 6 \times 7 = 42$$

$$65\% = 60\% + 5\% = 42 + 3.5 = 45.5$$

$$70 + 45.5 = 115.5$$

Percentage Increase and Decrease (Calculator)**Increase:**

To calculate a percentage increase, calculate 65% using the decimal multiplier and add it on.

Increase 70 by 65%

$$65\% \text{ of } 70 \quad 65\% = 0.65$$

$$65\% \text{ of } 70 = 0.65 \times 70 = 45.5$$

$$70 + 45.5 = 115.5$$

Dr Frost Key Skills

130 Percentage of an amount

215 Percentage change

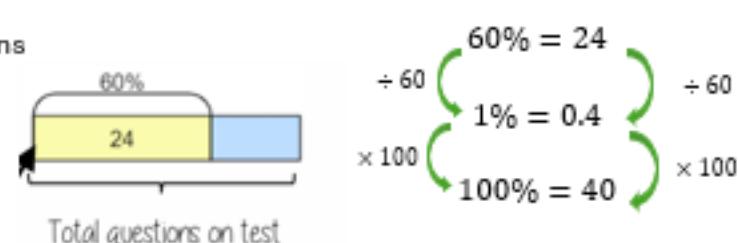
217 Percentage of an amount greater than 100%

219 Percentage of amount using decimal multiplier

220 Percentage increase or decrease

222 Reverse percentages (finding the original amount)

223 Reverse Percentages (using decimal multiplier)


Finding the original amount

In a test Lucy scored 60% of her questions correctly.

Her score was 24.

How many questions were on the test?

Always draw a bar model to illustrate the question

Keywords

Standard form – A number written in the form $A \times 10^n$ where $1 \leq A < 10$ and n is an integer.

Commutative: An operation is commutative if changing the order does not change the result.

Base: The number that gets multiplied by a power

Power: The exponent – or the number that tells you how many times to use the number in multiplication

Exponent: The power – or the number that tells you how many times to use the number in multiplication

Indices: The power or the exponent.

Negative: A value below zero.

Place Value : Place value is the value of a digit according to its position in the number such as ones, tens, hundreds

Dr Frost Key Skills

301 Conversion of large numbers to and from standard form

302 Conversion of small numbers to and from standard form

303 Adding and Subtracting of Standard form

304 Multiplying and Dividing of standard form

Year 8

Investigate positive powers of 10

Work with numbers greater than 1 in standard form

Investigate negative powers of 10

Work with numbers between 0 and 1 in standard form

Add and subtract numbers in standard form

Multiply and divide numbers in standard form

Learning JourneyKey KnowledgeConverting with Standard Form

Ordinary numbers: To change between ordinary numbers and standard form we need to use a power of 10.

$$8400000 = 8.4 \times 10^6$$

This number need to be bigger than 1 and less than 10 to be in standard form

$$0.0007 = 7 \times 10^{-4}$$

Positive power = Bigger Number
Negative Power = Smaller Number

Standard form: To change numbers from standard form back to ordinary numbers we multiply by the power of 10

$$4.21 \times 10^5 = 421000$$

5 to the right

The power tells us how many places to move **not how many zeros to add**

$$2.21 \times 10^{-3} = 0.0221$$

3 to the left

Adding and subtracting with standard form

$$6 \times 10^5 + 8 \times 10^4 = 600000 + 80000$$

$$= 680000$$

$$= 6.8 \times 10^5$$

- 1) Convert both numbers to standard form
- 2) Do the calculation
- 3) Convert back to standard form (depending on the question)

Year 8

Number Sense

Year 7

Round a number to 1 significant figure
Round integers to the nearest power of ten
Use estimation as a method for checking mental calculations

Year 8

Round numbers to powers of 10 and 1 significant figure
Round numbers to a given number of decimal places
Estimate the answer to a calculation
Understand and use error interval notation (H)

Learning Journey

Calculate using the order of operations
Calculate with money
Convert metric measures of lengths
Convert metric units of area (H)

Keywords

Significant: Place value of importance

Round: Making a number simpler but keeping its value close to what it was.

Decimal: Place holders after the decimal point.

Overestimate: Rounding up – gives a solution higher than the actual value

Underestimate: Rounding down – gives a solution lower than the actual value.

Metric: A system of measurement.

Balance: The amount of money in a bank account

Deposit: Putting money into a bank account.

Dr Frost Key Skills

- 37 Rounding to powers of 10
- 75 Rounding to decimal places
- 187 Rounding a number to a given number of significant figures
- 188 Estimation
- 115 Order of Operations
- 107 Converting between metric units of measure
- 323 Converting between units of area and volume

Key Knowledge

Round to powers of 10 and 1 significant figure

5495 to the nearest 1000

5000

6000

5475 to the nearest 100

5400

5500

5475 to the nearest 10

5470

5480

If the number is halfway between, we “roundup”

370 to 1 significant figure is 400

37 to 1 significant figure is 40

3.7 to 1 significant figure is 4

0.37 to 1 significant figure is 0.4

0.00037 to 1 significant figure is 0.0004

Round to the first non-zero number

When rounding using significant figures, look at the place value of the number

Estimation

$$348 + 692 \approx \frac{300 + 700}{0.5} = \frac{1000}{0.5} = 2000$$

To estimate you should round each number in a calculation to 1 significant figure, then calculate.

This is an **underestimate** because both values were rounded down

Round to decimal places

2.46192

Focus on the number after the decimal point

Round to 1 decimal place- To one number after the decimal.

2.46192 (to 1dp) - Is this closer to 24 or 25

2.46192
This shows the number is closer to 25

Round to 2 decimal places- To one number after the decimal.

2.46192 (to 2dp) - Is this closer to 246 or 247

2.46192
This shows the number is closer to 246

Year 8

Angles in Parallel Lines and Polygons

Year 7

- Understand angles of turn
- Classify angles
- Draw and Measure angles up to 360 degrees
- Angles in a triangle, quadrilateral and polygon
- Investigate angles in parallel lines
- Vertically Opposite angles
- Understand and use the sum of angles at a point
- Angles on a straight line

Year 8

- Identify and calculate with alternate and corresponding angles
- Identify and calculate with co-interior, alternate and corresponding angles
- Solve complex problems with parallel line angles
- Investigate the properties of special quadrilaterals
- Understand and use the sum of exterior angles of any polygon
- Understand and use the sum of the interior angles in any polygon
- Calculate missing interior angles in regular polygons

Learning Journey

Keywords

Parallel: Straight lines that never meet

Angle: The figure formed by two straight lines meeting (measured in degrees)

Transversal: A line that cuts across two or more other (normally parallel) lines

Isosceles: Two equal size lines and equal size angles (in a triangle or trapezium)

Polygon: A 2D shape made with straight lines

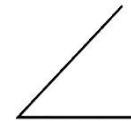
Sum: Addition (total of all the interior angles added together)

Regular polygon: All the sides have equal length; all the interior angles have equal size.

Dr Frost Key Skills

77 Types of Quadrilaterals and triangles

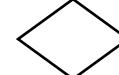
147 Vertically Opposite Angles


151 Sum of angles in Quadrilaterals

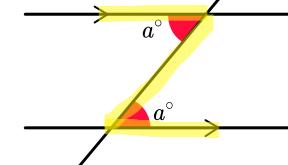
261 Interior and Exterior angles of regular and irregular polygons


262 Alternate, Corresponding and Co-interior angles

Key Knowledge


Basic angle rules

Acute Angle
 $0^\circ < \text{angle} < 90^\circ$



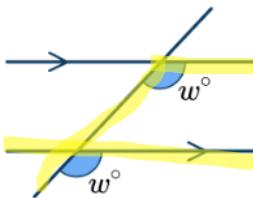
Obtuse Angle
 $90^\circ < \text{angle} < 180^\circ$

Quadrilateral
 360°

Angles in parallel lines

Alternate Angles are **Equal**

Look for a Z shape

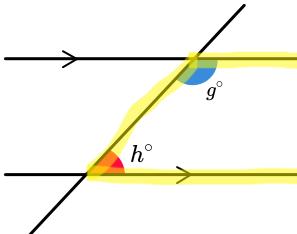


Vertically Opposite Angles are **Equal**

Right Angle
 90°

Reflex Angle
 $180^\circ < \text{angle} < 360^\circ$

Triangle
 180°


Corresponding Angles are **Equal**

Look for a F shape

Angles on a Straight Line
 180°

Angles around a point
 360°

Circle
 360

Co-interior angles add up to 180°

Year 8

Area of Trapezia and Circles

Year 7

Area of Rectangles and Parallelograms

Area of Triangles

Solve problems using the area of Trapezia

Learning Journey

Year 8

Calculate the area of triangles, rectangles and parallelograms

Calculate the area of a trapezium

Calculate the perimeter and area of compound shapes

Calculate the area of a circle and parts of a circle

Keywords

Congruent: The same

Area: Space inside a 2D Shape

Perimeter: Length around the outside of a 2D shape

Pi(π): The ratio of a circle's circumference to its diameter

Perpendicular: At an angle of 90° to a given surface

Formula: A mathematical relationship/ rule given in symbols

Sector: A part of the circle enclosed by two radii and an arc

Compound Shape: Any shape that is made up of two or more geometric shapes.

Diameter: The diameter is the distance from one point of the circle through the centre of the circle to another point on the circle.

Radius: A line segment extending from the centre of a circle to the circumference of the circle

Dr Frost Key Skills

138 Area of Rectangle

139 Area of Parallelogram

140 Area of Triangle

182 Area of Composite shapes

184 Area of Trapezium

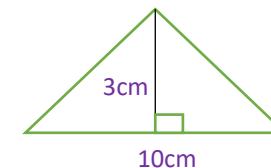
210 Area of Full Circle

213 Area of Composite Shapes including Circles

319 a Area of Sector

Key Knowledge

Area of Rectangles, Triangles and Parallelograms

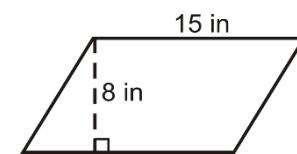

5cm

12cm

Find the area of the rectangle

Area = $\text{Base} \times \text{Height}$

$$\text{Area} = 12\text{cm} \times 5\text{cm} = 60\text{cm}^2$$


3cm

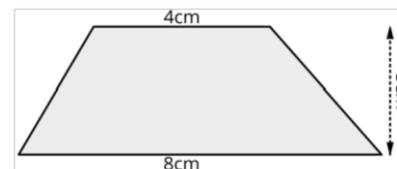
10cm

Find the area of the triangle

Area = $\frac{\text{Base} \times \text{Height}}{2}$

$$\text{Area} = \frac{10\text{cm} \times 3\text{cm}}{2} = 15\text{cm}^2$$

15 in

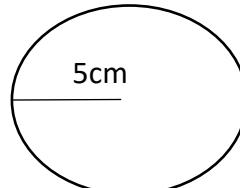

8 in

Find the area of the parallelogram

Area = $\text{Base} \times \text{Height}$

$$\text{Area} = 15 \text{ in} \times 8 \text{ in} = 120\text{in}^2$$

Area of Trapezium and Circle



Why?
Two congruent trapeziums make a parallelogram

$$\text{Area} = \frac{1}{2} \times (a + b) \times \text{Height}$$

$$\text{Area} = \frac{1}{2} \times (4 + 8) \times 5$$

$$\text{Area} = 30\text{cm}^2$$

$$\text{Area} = \pi \times r^2$$

$$\text{Area} = \pi \times 5^2$$

$$\text{Area} = 25\pi \text{ or } 78.5398 \dots$$

Check whether the question asks you to leave your answer in π

Keywords

Mirror line: A line that passes through the centre of a shape with a mirror image on either side of the line

Reflect: Mapping of one object from one position to another of equal distance from a given line.

Vertex: A point where two or more line segments meet.

Perpendicular: Lines that cross at 90°

Horizontal: A straight line from left to right (parallel to the x axis)

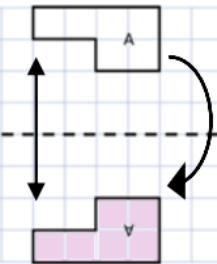
Vertical: A straight line from top to bottom (parallel to the y axis)

Line of Symmetry: A line of symmetry is a line that cuts a shape exactly in half.

Year 8

Recognise line symmetry

Reflect a shape in a horizontal or vertical line 1 (shapes touching the line)

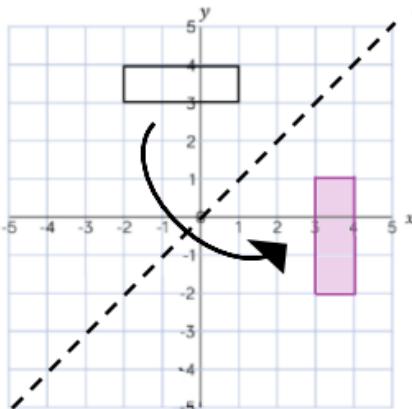

Reflect a shape in a horizontal or vertical line 2 (shapes not touching the line)

Reflect a shape in a diagonal line 1 (shapes touching the line)

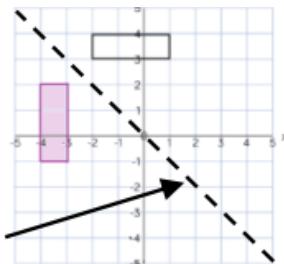
Reflect a shape in a diagonal line 2 (shapes not touching the line)

Key Knowledge**Reflecting horizontally and vertically**

All points need to be the same distance away from the line of reflection


Lines parallel to the x and y axis**REMEMBER**

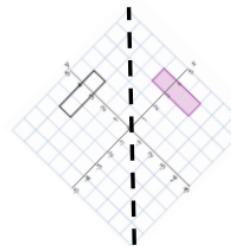
Lines parallel to the x-axis are $y = \text{_____}$


Lines parallel to the y-axis are $x = \text{_____}$

Reflecting Diagonally

This is the line $y = x$ (every y coordinate is the same as the x coordinate along this line)

This is the line $y = -x$
The x and y coordinate have the same value but opposite sign


Dr Frost Key Skills

81 Reflecting a shape in a mirror line

153 Reflecting a shape on axes using given mirror line

278 Reflecting a shape in line with given equations

279 Describing a reflection

Turn your image

If you turn your image it becomes a vertical/ horizontal reflection (also good to check your answer this way)

Year 8

Measures of Location

Keywords

Spread: The distance/ how spread out/ variation of data.

Average: A measure of central tendency – or the typical value of all the data together

Total: All the data added together

Frequency: The number of times the data values occur

Represent: Something that shows the value of another

Outlier: A value that stands apart from the data set

Consistent: A set of data that is similar and doesn't change very much

Corelation: A mutual relationship or connection between two or more things

Line of Best fit: A sensible straight line that goes as centrally as possible through the coordinates plotted

Dr Frost Key Skills

132 Mean as an average

207 Mode, median, range from listed data

208 Combining means or dealing with changes to mean

236 Means from ungrouped frequency table

244 Scatter Graph and Corelation

312 Estimating the mean from Grouped Frequency table

Year 7

Find the range of a set of numbers
Find the median of a set of numbers

Year 8

Understand and use the mean, median and mode
Choose the most appropriate average
Find the mean from an ungrouped and grouped frequency table
Identify outliers
Compare distributions using averages and the range

Learning Journey

Key Knowledge

Averages from List

24, 8, 11, 4, 8

$24 + 8 + 11 + 4 + 8 = 55$

Mean

- 1) Find the sum of the data
- 2) Divide the overall total by how pieces of data there are

4, 8, 8, 11, 24

4, 8, 8, 11, 24

Median

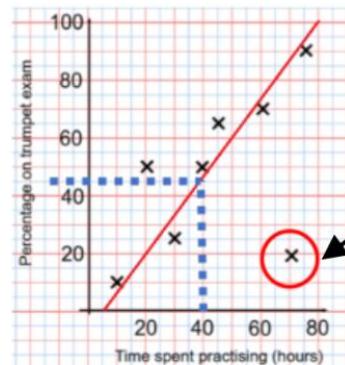
- 1) Arrange the numbers in order
- 2) Find the value in the middle

Mode

This is the number OR the item that occurs the most
8 is the answer here as the number appears TWICE!

NOTE:

If there is no single middle value find the mean of the two numbers left


Identify Outliers

Outliers are values that stand well apart from the rest of the data

They can have a **big** impact on the **range** and the **mean**.

But have less impact on the **median** and the **mode**.

Sometimes it is best to not use an outlier in calculations

Outliers can also be identified graphically
eg on scatter graphs