

Year 10 Congruence, Similarity and Enlargement

Keywords

Enlarge:

to make a shape bigger (or smaller) by a given multiplier (scale factor)

Scale Factor:

The multiplier of enlargement.
(This could be fractional or negative)

Centre of enlargement:

The point the shape is enlarged from

Congruent:

The same size and shape

Corresponding:

Items that appear in the same place in two similar situations

Parallel:

Straight lines that never meet (equal gradients)

Similar:

Two polygons have the same shape, but possibly have different sizes

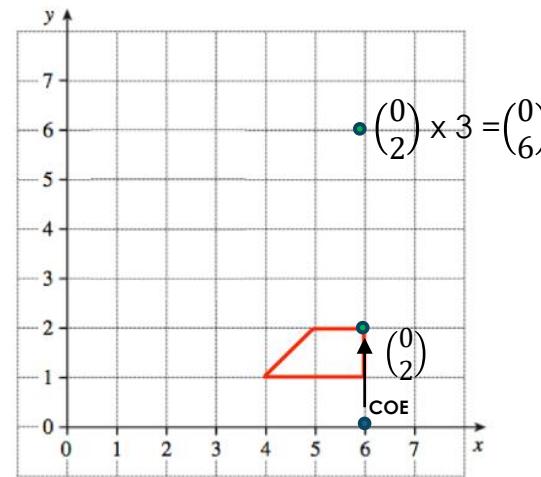
Column Vector:

This is a way of writing a vector which gives information about the vector.

The horizontal component tells us how many spaces to the left or right and the vertical component tells us how many spaces up or down.

Year 9

- Enlargement a shape by Positive Integer Scale Factor
- Enlarge a shape by a Positive Integer Scale factor from a point
- Enlarge a shape by Positive Fractional Scale Factor
- Enlarge a shape by a negative scale factor (H)
- Work out missing sides and angles in a pair of given similar shapes
- Solve problems with similar triangles (H)


Year 10 and 11

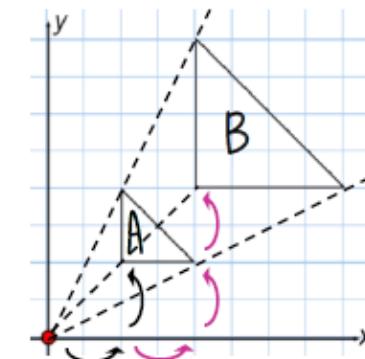
- Explore Areas of Similar Shapes
- Explore Volumes of Similar Shapes
- Understand and use Conditions for Congruent triangles
- Understand the difference between congruence and similarity

Learning Journey

Key Knowledge

Counting Squares

Enlarge the trapezium by scale factor 3, centre (6, 0).


Using Ray Lines

Enlargement from a point

Enlarge shape A by SF 2 from (0,0)

The shape is enlarged by 2

The distance from the point enlarges by 2

Dr Frost Key Skills

471 Proving Triangles Congruence Using SSS, SAS, ASA and RHS

294 & 377 Describing an Enlargement

295 Enlargement by a positive Integer Scale Factor

376 Enlargement by a negative Scale Factor

324 Relationship between Scale Factors of Length, Area and Volume

- 1) Find the Centre of Enlargement (COE)
- 2) From the COE, count the squares required to go to each vertices of the shape and write this as a column vector
- 3) Multiply the column vector by the scale factor
- 4) From the COE, use the new column vector and plot your points. (Do this for all vertices)

Year 10 Trigonometry

Learning Journey

Keywords

Cosine Ratio- The ratio of the adjacent side of a right triangle to the hypotenuse.

Sine Ratio- The ratio of the length of the opposite side to that of the hypotenuse.

Tangent Ratio- The ratio of the length of the opposite side to that of the adjacent side

Hypotenuse- The longest side in a right-angled triangle.

Opposite- The side facing the angle in a right-angled triangle.

Adjacent- The side next to the angle given in a right-angled triangle

Inverse operation: The operation that reverses the effect of another operation.

Square number- The result when you multiply a number by itself.

Angle- This is the space between two rays

Dr Frost Key Skills

288 Pythagoras Theorem in 2D

410 Pythagoras Theorem in 3D

321 Trigonometry to determine side lengths in a right-angle triangle

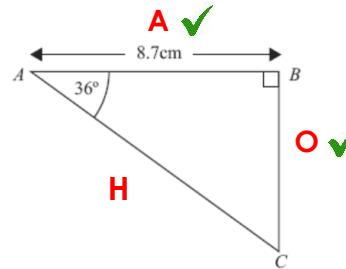
322 Trigonometry to determine angles in right-angle triangles

411 Trigonometry in 3D shapes (right angle only)(H)

469 Bearing problems involving non-right-angle triangles (H)

Year 9

- Identify the hypotenuse of a right-angle triangle
- Determine whether a triangle is a right-angle
- Calculate the hypotenuse of a right-angle triangle
- Calculate missing angles in right angle triangles,
- Use Pythagoras in 3D shapes (H)


Year 10

- Use the Sine, Cosine, and Tangent ratios to find missing sides
- Use the Sine, Cosine, and Tangent ratios to find the missing angles
- Calculate sides in right angle triangle using Pythagoras' Theorem
- Work with key angles in right angle triangle
- Use Trigonometry in 3D Shapes (H)
- Use the Sine rule to find missing sides and angles (H)
- Use the Cosine rule to find missing sides and angles (H)
- Solve Bearing problems involving Trigonometry, Pythagoras, and Sine and Cosine Rule (H)

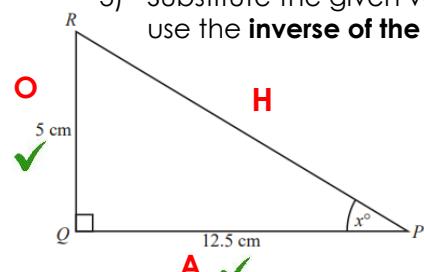
Key knowledge

Trigonometry Finding a missing side

- 1) Label the Sides you need as O, A and H
- 2) Use this to decide which ratio you need
- 3) Substitute the given values into the formula and solve

SOH	CAH	TOA
$\text{SINE} = \frac{\text{OPP}}{\text{HYP}}$	$\text{COSINE} = \frac{\text{ADJ}}{\text{HYP}}$	$\text{TANGENT} = \frac{\text{OPP}}{\text{ADJ}}$

Find the length of BC


$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\tan 36^\circ = \frac{\text{opp}}{8.7}$$

$$\tan 36^\circ \times 8.7 = 6.32 \text{ cm}$$

Trigonometry Finding a missing angle

- 1) Label the Sides you need as O, A and H
- 2) Use this to decide which ratio you need
- 3) Substitute the given values into the formula and use the **inverse of the trig ratio to find the angle**

The inverse of sin, cos and tan are \sin^{-1} , \tan^{-1} , \cos^{-1} . They are found by pressing shift sin on your calculator.

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\tan \theta = \frac{5}{12}$$

$$\tan^{-1} \frac{5}{12} = 21.8^\circ$$

Year 10

Representing Solutions of Equations and Inequalities

Keywords

Solution- A value that we can put to make the equation true

Equation- A mathematical statement that shows that two expressions are equal

Expression- Numbers, symbols, and operators grouped to show the value of something

Linear- An equation where both sides have variables that can

Integer- A whole number

Solve- To get the solution or answer to the question

Inverse- This is another word for opposite. We complete the opposite operation to the one shown in the question.

Dr Frost's Key Skills

199 Solving Linear Equations where the variable appears on one side of the equation only

200 Solving equations involving integer powers and their roots as inverses

254 Solving Linear equations with brackets

257 Solving linear equations with unknowns on both sides

258 Solving Linear equations involving fractions

339 Solving linear inequalities in one variable

340 Solving linear inequalities with one variable on both sides

342 Forming and Solving linear inequalities from a given context

Year 7

Solve One-Step Equations

Solve Two Step Equations

Year 8

Form algebraic expressions

Multiply out a single bracket

Form and Solve Equations with Brackets

Form and Solve inequalities

Solve equations and inequalities with unknowns on both sides

Form and Solve Equations and inequalities with unknowns on both sides

Year 9

One and two-step equations and inequalities

Equations and inequalities with brackets

Solve equations with unknowns on both sides

Solve inequalities with unknowns on both sides

Learning Journey

Year 10

Form and solve one-step and two-step equations

Form and solve one-step and two-step inequalities

Show solutions to inequalities on a number line

Interpret representation on number lines as inequalities

Represent solutions to single inequalities on a graph (H)

Represent solutions to multiple inequalities on a graph (H)

Solve quadratic equations by factorization (H)

Solve quadratic inequalities in one variable (H)

Key Knowledge

Solve Two Step Equations & Inequalities

$$6y + 2 = 20$$

$$\begin{matrix} -2 & -2 \end{matrix}$$

Subtract first because the 2 is separate from y

$$6y = 18$$

$$\begin{matrix} \div 6 & \div 6 \end{matrix}$$

Divide because it is the inverse of multiplying

$$y = 3$$

$$\frac{w - 5}{3} < 6$$

$$\begin{matrix} \times 3 & \times 3 \end{matrix}$$

Multiply first because the entire expression is divided by 3

$$w - 5 < 18$$

$$\begin{matrix} +5 & +5 \end{matrix}$$

Add because it is the inverse of subtracting

$$w < 23$$

Solve with unknowns on both sides

$$5x - 20 > 3x + 4$$

$$\begin{matrix} -3x & -3x \end{matrix}$$

Subtract 3x from both sides because it is the smaller term of x

$$2x - 20 > 4$$

$$\begin{matrix} +20 & +20 \end{matrix}$$

Solve like a normal two step equation

$$2x > 24$$

$$\begin{matrix} \div 2 & \div 2 \end{matrix}$$

$$x > 12$$

Year 10

Simultaneous Equations

Keywords

Solution- A value we can put in place of a variable that makes an equation true

Substitute- Replace a variable with a numerical value

LCM- Lowest Common Multiple
(The lowest multiple shared by two or more numbers)

Eliminate- To remove

Intersection- The point two lines cross or meet

Simultaneous Equations

More than one equation that involves more than one variable. The variables have the same value in each equation

Quadratic Equation

Equations which involve the second power of a variable e.g. x^2 or y^2

Year 10

Solve a pair of linear simultaneous equations by elimination

Solve a pair of linear simultaneous equations by substitution

Form and solve a pair of linear simultaneous equations from given information

Solve a pair of linear simultaneous equations using graphs

Solve a pair of simultaneous equations (one linear, one quadratic) using graphs (H)

Solve a pair of simultaneous equations (one linear, one quadratic) algebraically (H)

Learning Journey

Key Knowledge

Two Linear Equations (Elimination)

$$3x + 2y = 18$$

$$3x - y = 9$$

x 2

SSS- Same Sign Subtract

DSA- Different Sign Add

$$3x + 2y = 18$$

$$+ 6x - 2y = 18$$

$$9x = 36$$

$$x = 4$$

Substitute $x = 4$ into **an** original equation

$$3x + 2y = 18$$

$$3(4) + 2y = 18$$

$$12 + 2y = 18$$

$$2y = 6$$

$$y = 3$$

Substitute both values into the other equation to check your solution

Dr Frost's Key Skills

275 Solving Linear Equations using Graphical Methods

276 Solving Linear Equations using Elimination or Substitution

419 Solve Non-Linear Equations by Substitution

362 Factorise Quadratic Expressions in the form $x^2 \pm bx \pm c$

$$\begin{array}{l} 1 \quad y = 2x \\ 2 \quad x + y = 6 \end{array}$$

$$\begin{aligned} x + 2x &= 6 \\ 3x &= 6 \\ x &= 2 \end{aligned}$$

- 1) Label the equations 1 and 2
- 2) Substitute what you know to the other equation and solve
- 3) Substitute your answer to work out the other unknown

$$\begin{aligned} y &= 2x \\ y &= 2(2) \\ y &= 4 \end{aligned}$$

Year 10

Angles and Bearings

Keywords

Cardinal directions: The directions of North, South, East, and West

Angle: The amount of turns between two lines around their common point

Bearing: A bearing is an angle, measured clockwise from the north direction. It is given as a 3-digit number.

Perpendicular: where two lines meet at 90°

Parallel: Straight lines are always the same distance apart and never touch. They have the same gradient.

Clockwise:
Moving in the direction of the hands on a clock.

Construct: Draw accurately using a compass, protractor, ruler, or straight edge.

Scale: Scales are used to reduce real-world dimensions to a usable size.

Protractor: An instrument used in measuring or drawing angles

Dr Frost's Key Skills

264 Bearings (Excluding Trigonometry)

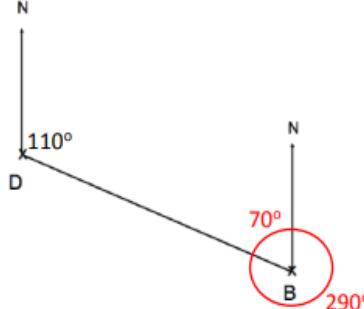
469 Bearings involving non-right-angled triangles (H)

465 Sine Rule and Cosine Rule to determine lengths in a non-right-angled triangle (H)

466 Sine rule and Cosine Rule to determine angles in a non-right-angled triangle (H)

Year 10

Use cardinal directions and related angles (R)
Draw and interpret scale diagrams (R)
Understand and represent bearings
Measure and read bearings
Make scale drawings using bearings


Year 10

Calculate bearings using angle rules
Solve bearings problems using Pythagoras and trigonometry
Solve bearings problems using the sine and cosine rules (H)

Learning Journey

Key Knowledge

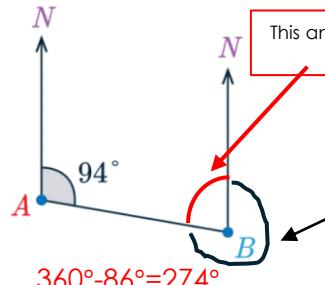
The diagram shows the position of a boat B and dock D.

a) Calculate the real distance between the boat and the dock.
 $6\text{cm} = 6 \times 5$
 $= 30\text{km}$

Measure the distance between the dock and the boat with a ruler

b) State the bearing of the boat from the dock.
 110°

Always start from the point and bearings go CLOCKWISE!


c) Calculate the bearing of the dock from the boat.
 $180^\circ - 110^\circ = 70^\circ$ because the angles are co-interior
 $360^\circ - 70^\circ = 290^\circ$ because angles around a point equal 360°

The scale of the diagram is 1cm to 5km.

Finding the bearing from a point

Find the bearing of A from B.

The sentence... "Bearing of _____ from _____" is really important in identifying the bearing being represented

Year 10

Working with Circles

Keywords

Circumference:

The length around the outside of the circle –the perimeter

Area:

The size of the 2D surface

Diameter:

The distance from one side of a circle to another through the center

Radius:

The distance from the center to the circumference of the circle

Tangent:

A straight line that touches the circumference of a circle

Chord:

A line segment connecting two points on the curve

Hemisphere:

Half a sphere

Surface Area:

The total area of the surface of a 3D shape.

Arc Length : This is a fraction of the circumference**Sector:** A pie-shaped part of a circle made of the arc along with its two radii**Year 10**

Use cardinal directions and related angles (R)

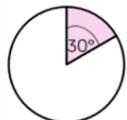
Draw and interpret scale diagrams (R)

Understand and represent bearings

Measure and read bearings

Make scale drawings using bearings

Year 10


Calculate bearings using angle rules

Solve bearings problems using Pythagoras and trigonometry

Solve bearings problems using the sine and cosine rules (H)

Learning Journey

Key Knowledge

Fractional parts of a circle

30° represents $\frac{30}{360}$ of a full circle

A circle is made up of 360°

$$\frac{30}{360} = \frac{1}{12}$$

$\frac{270}{360}$ of a full circle (in degrees)

$\frac{6}{8}$ of a full circle (in equal parts)

$\frac{3}{4}$ of a full circle

Formula to remember

Area of a circle = πr^2

Circumference of a circle = πd or $2\pi r$

The fraction of the circle is as $\frac{\theta}{360}$

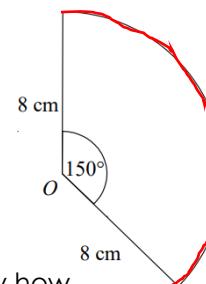
θ represents the degrees in the sector

Finding the Area of the Sector

- 1) Find the Area of the circle

$$Area = \pi \times r^2$$

$$Area = \pi \times 8^2$$


$$Area = 64\pi \text{ or } 200.96\ldots$$

- 2) Use your answer and multiply by how much of a circle you have

$$Area = 64\pi \text{ or } 200.96 \times \frac{150}{360}$$

$$Area = 83.8 \text{ 3 S.F}$$

Finding the Arc Length

- 1) Find the circumference of the circle

$$\text{Circumference} = \pi \times d$$

$$\text{Circumference} = \pi \times 16$$

$$\text{Circumference} = 16\pi \text{ or } 50.24\ldots$$

- 2) Use your answer and multiply by how much of a circle you have

$$\text{Circumference} = 16\pi \text{ or } 50.24 \times \frac{150}{360}$$

$$\text{Circumference} = 20.9 \text{ 3 S.F}$$

Dr Frost's Key Skills

209 Circumference of a circle

210 Area of full circle

318 Arc length of more general sectors

319 Area of more general sectors

Year 10

Vectors

Keywords

Direction: The line our course something is going

Magnitude: The magnitude of a vector is its length

Scalar: A single number used to represent the multiplier when working with vectors

Column vector: A matrix of one column describing the movement from a point

Resultant: The vector that is the sum of two or more other vectors

Parallel: Straight lines that never meet

Translation: Translate means to move a shape. The shape does not change size or orientation.

Collinear Vectors: These are vectors that are on the same line.
To show that two vectors are collinear, **show that one vector is a multiple of the other (parallel) AND that both vectors share a point**

Dr Frost's Key Skills

- 372 Column Vector Notation
- 373 Adding, Subtracting and Scaling Column Vector
- 472 Magnitude of Column Vector
- 473 Vectors Using Variables
- 474 Parallel Vectors and Straight Lines proofs using vectors
- 475 Solving Vectors problems by introducing of a scalar

Year 10

Understand and represent vectors

Use and read vector notation

Draw and understand vectors multiplied by a scalar

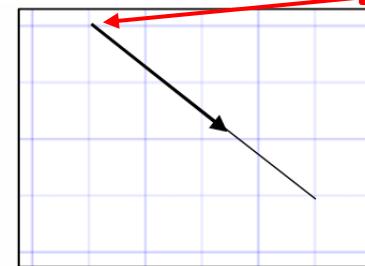
Draw and understand addition and subtraction of vectors

Explore vector journeys in shapes (H)

Understand parallel vectors (H)

Explore co-linear points using vectors (H)

Use vectors to construct geometric arguments and proofs (H)


Learning Journey

Key Knowledge

Understand and Represent Vectors

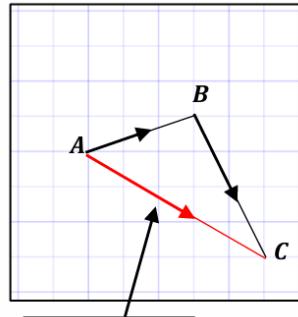
Column vectors have been seen in translations to describe the movement of one image onto another

Movement along the x-axis →
$$\begin{pmatrix} 4 \\ -3 \end{pmatrix}$$
 → Movement along the y-axis

Starting point

Addition of Column Vectors

$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

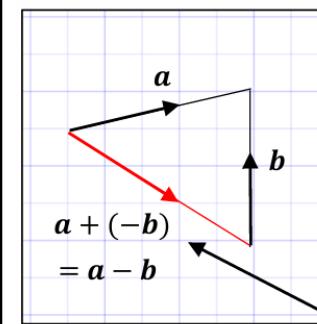

$$\overrightarrow{BC} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$\overrightarrow{AB} + \overrightarrow{BC}$$

$$= \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$= \begin{pmatrix} 3+2 \\ 1+(-4) \end{pmatrix}$$

$$\overrightarrow{AC} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$


Look how this addition compares to the vector \overrightarrow{AC}

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

Addition and Subtraction of Column Vectors

$$\mathbf{a} = \begin{pmatrix} 5 \\ 1 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

$$\mathbf{a} + (-\mathbf{b}) = \begin{pmatrix} 5+0 \\ 1+(-4) \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

The resultant is $\mathbf{a} - \mathbf{b}$ because the vector is in the opposite direction to b which needs a scalar of -1

Year 10

Ratio and Fractions

Keywords

Ratio: Relationship between two or more numbers.

Simplify: Divide all parts of a ratio by the same number.

Equivalent: Equal in Value

Proportion: a statement that links two ratios

Integer: The whole number, can be positive, negative, or zero.

Fraction: Represents how many parts of a whole.

Denominator: the number below the line on a fraction. The number represents the total number of parts.

Numerator: The number above the line on a fraction. The top number. Represents how many parts are taken

Convert: Change from one form to another

Gradient: The steepness of a line

Exchange rate: The value of one currency for the purpose of conversion to another.

Year 10

Compare quantities using a ratio

Link ratios and fractions

Share in a ratio

Use ratios and fractions to make comparison

Solve problems with currency conversion

Use and interpret ratios of the form $1:n$ and $n:1$

Solve best buy problems

Combine a set of ratios

Ratio in area problems (H)

Ratio in volume problems (H)

Learning Journey

Dr Frost Key Skills

224a-j – Simplifying ratios and forming ratios from a given context

227a-j -Combining ratios and proportions into a single ratio

177 Exchange Rates

225- Finding a Quantity within a ratio where either the total amount, or a particular difference is given

464 Problem Solving with Ratio

176 Multiplicative Scaling and Numerical Proportion relationships

Key Knowledge

Combining Ratios

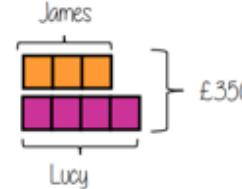
The ratio of Blue Counters to Red Counters is $5 : 3$

The Ratio of Red Counters to Green Counters is $2 : 1$

Find the ratio of Blue : Red : Green Counters

Before combining both statements, we need to find the **Lowest Common Multiple** that both ratio share

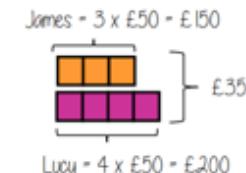
$$\begin{array}{ccc} B & R & G \\ 5 \times 2 & 3 \times 2 & 2 \times 3 \\ & & 1 \times 3 \end{array}$$


10 6 3

Sharing a whole into a given ratio

James and Lucy share £350 money in the ratio 3 : 4.

Work out how much each person earns


1) Model the question

$$\text{£350} \div 7 = \text{£50}$$

\square = one part
= £50

2) Find the value of one part

3) Put back into question

Year 10

Using Numbers

Keywords

Truncate: to shorten, to shorten a number (no rounding), to shorten a shape (remove a part of the shape)

Round: Making a number simpler but keeping its place value close to the what it originally was.

Credit: Money that goes into a bank account

Debit: Money that leaves a bank account

Profit: The amount of money after income - costs

Tax: The government collects money based on income, sales and other activities.

Balance: The amount of money in a bank account

Overestimate: Rounding up -gives a solution higher than the actual value

Underestimate: Rounding down -gives a solution lower than the actual value

Significant Figures– The number of digits in a value that carry a meaning to the size of the number.

Estimate– Find a value that is close to the right answer by rounding.

Dr Frost Key Skills

56 Adding and Subtracting Fractions with Same Denominator

99 Adding and Subtracting Fractions with Different Denominators

101 Converting Between Mixed Fractions and Improper Fractions

165,166 Multiplying and Dividing Proper Fractions

167,168 Multiplying and Dividing Improper Fractions

334 Simplifying Surds

335 Multiplying and Dividing Surds

336 Expanding Brackets with Surds (H)

393 Rationalising the Denominator (H)

Year 10

The four rules of fraction arithmetic

Rational and irrational numbers (H)

Understand and use surds (H)

Calculate with surds (H)

Rounding to decimal places and significant figures Break down and solve multi-step problems

Solve financial maths problems

Estimating answers to calculations

Understand and use limits of accuracy

Upper and lower bounds (H)

Learning Journey

Key Knowledge

Four Operations with Fractions

Adding and Subtracting

Find the lowest common multiple for both denominators

Calculate

$$\frac{4}{5} - \frac{2}{3}$$

$$\frac{4 \times 3}{5 \times 3}$$

$$\frac{2 \times 5}{3 \times 5}$$

$$\frac{12}{15} - \frac{10}{15} = \frac{2}{15}$$

Significant Figure

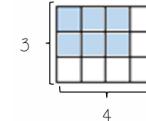
Significant Figures

370 to 1 significant figure is 400

37 to 1 significant figure is 40

37 to 1 significant figure is 4

0.37 to 1 significant figure is 0.4


0.00000037 to 1 significant figure is 0.0000004

SF: Round to the first nonzero number

Multiplying Fractions

Calculate

$$\frac{3}{4} \times \frac{2}{3} = \frac{3 \times 2}{4 \times 3} = \frac{6}{12} = \frac{1}{2}$$

Calculate

$$\frac{2}{5} \div \frac{3}{4} = \frac{2}{5} \times \frac{4}{3} = \frac{8}{15}$$

Make sure you multiply the first fraction with the reciprocal

Estimation

$$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = \frac{1000}{0.5} = 2000$$

To estimate you should round each number in a calculation to 1 significant figure, then calculate.

This is an underestimate because both values were rounded down

Year 10

Types of numbers & sequences

Keywords

Factor: Numbers we multiply together to make another number

Multiple: The result of multiplying a number by an integer.

HCF: Highest common factor. The biggest factor that numbers share.

LCM: Lowest common multiple. The first multiple numbers share.

Arithmetic: A sequence where the difference between the terms is constant

Geometric: A sequence where each term is found by multiplying the previous one by a fixed nonzero number

Sequence: Items or numbers put in a pre-decided order

Prime Numbers:

A whole number greater than 1 that cannot be exactly divided by any whole number other than itself and 1

Nth Term:

The **n**th term refers to a term's position in the sequence,

Common Difference

This is the amount the sequence increases or decreases each time.

Dr Frost's Key Skills

162 Lowest Common Multiple or Highest Common Factor by Prime Factorisation

161 Prime Factorisation of a number

205 n th term formula for an arithmetic sequence

369 n th term formula for a quadratic sequence

Year 10

Understand the difference between factors and multiples

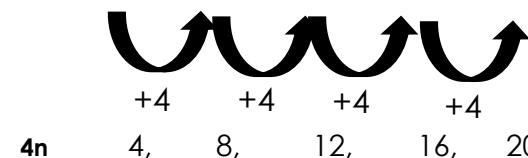
Understand primes and express a number as a product of its prime factors

Find the HCF and LCM of a set of numbers

Describe and continue sequences involving surds (H)

Find the rule for the n th term of a linear sequence

Find the rule for the n th term of a quadratic sequence (H)

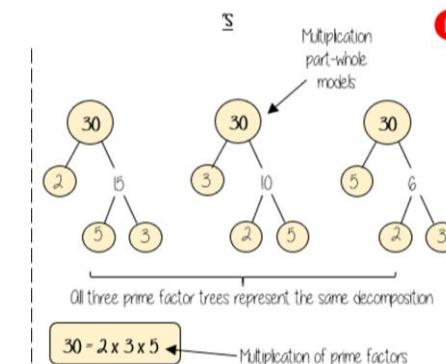

Learning Journey

Key Knowledge

Find the n th term

Find the n th term for the following sequence 3, 7, 11, 15, 19

3, 7, 11, 15, 19


The sequence is adding 4 every single time.
Here we will start our sequence as $4n$

This has the same constant difference—but is 1 less than the original sequence

$4n - 1$

This is the **difference** between the original and new sequence

Product of Prime Factors

Finding the HCF and LCM

Find the HCF of 12 and 20

The factors of 12 are 1, 2, 4, 6 and 12

The factors of 20 are 1, 2, 4, 5, 10, and 20

Find the LCM of 12 and 20

They have a few factors in common, but the biggest factor is 4.

Multiples of 12

$12 \times 1 = 12$

$12 \times 5 = 60$

Multiples of 20

$12 \times 2 = 24$

$12 \times 6 = 72$

$20 \times 1 = 20$

$12 \times 3 = 36$

$20 \times 2 = 40$

$20 \times 3 = 60$

$12 \times 4 = 48$

$20 \times 4 = 80$

$LCM = 60$

Year 10

Using Indices Rules

Keywords

Standard (index) Form:

A system of writing very big or very small numbers

Commutative:

An operation is commutative if changing the order does not change the result.

Base:

The number that gets multiplied by a power

Power/Indices

This tells you how many times a base will be multiplied by itself

Negative:

A value below zero.

Coefficient:

The number used to multiply a variable.

Square:

A square number is the result of multiplying a number by itself

Root:

A root is the reverse of a power.

Dr Frost's Key Skills

88 Power notation and Calculate Simple Powers

157 Roots and Further Powers

158 Numerical Index Laws

194 Algebraic Index Laws

358 Expressing a Power using a different base (H)

298 Negative Indices (H)

394 Fractional Indices (H)

Year 8

Adding and Subtracting expressions with indices

Using the addition and subtraction law for indices

Exploring Powers of Powers

Year 10

Square and Cube Numbers

Calculate higher powers and roots

The addition and subtraction rules for indices

Understand and use the power zero and negative indices (H)

Work with powers of powers

Understand and use fractional indices (H)

Learning Journey

Key Knowledge

Laws of Indices

Multiplication Law:

When multiplying with the same base, **we add the powers.**

$$a^m \times a^n = a^{m+n}$$

Examples

$$2^5 \times 2^7 = 2^{12}$$

$$a^3 \times a^5 = a^8$$

Division law:

When dividing with the same base (number/letter) **we subtract the powers.**

$$a^m \div a^n = a^{m-n}$$

Examples

$$2^{14} \div 2^9 = 2^5$$

$$a^3 \div a^5 = a^{-2}$$

Brackets law:

When raising a power to another power **we multiply the powers together.**

Examples

$$(a^m)^n = a^{m \times n}$$

$$(5^4)^2 = 5^{4 \times 2} = 5^8$$

$$(h^9)^3 = h^{9 \times 3} = h^{27}$$

Different Example

$$(2x^3)^4 = 2x^3 \times 2x^3 \times 2x^3 \times 2x^3$$

The addition law applies ONLY to the powers
The integers still need to be multiplied

$$(2x^3)^4 = 16x^{12}$$

Year 10Percentages and InterestKeywords**Compound interest:**

Calculating interest on both the amount plus previous interest

Simple interest:

The amount of interest is fixed over period.

Depreciation: A decrease in the value of something over time.

Growth:

Where a value increases in proportion to its current value such as doubling.

Decay:

The process of reducing an amount by a consistent percentage rate over time.

Decimal Multiplier:

This is equivalent of the percentage.

Equivalent:

Of equal value.

Dr Frost's Key Skills

130 Calculate a simple percentage of an amount using chunking

214 Determine what percentage one number is of another

215 Percentage Change

219 Percentage of amount, using a decimal multiplier (Simple Interest)

222 Reverse Percentage problems

223 Reverse Percentage Problems using Decimal multipliers

359 Calculating values after compound percentage changes

Year 9

Calculate percentage increase and decrease

Express a change as a percentage

Solve reverse percentage problems

Solve problems with repeated percentage change (H)

Calculate simple interest

Calculate compound interest

Solve problems with Value Added Tax

Year 10

Repeated percentage change

Solve problems involving growth and decay

Calculate simple and compound interest

Key KnowledgePercentage of an amount (Non-Calculator)

To calculate any percentage, it is useful to start with 10%

$$30\% \text{ of } 120: 10\% = 120 \div 10 = 12 \quad \text{To find } 10\% \text{ we divide by 10.}$$

$$30\% = 3 \times 12 = 36 \quad \text{To find } 30\% \text{ we multiply } 10\% \text{ by 3.}$$

Percentage of an amount (Calculator)

To calculate any percentage, we will use a decimal multiplier.

$$83\% \text{ of } 120: 83\% = 0.83$$

Change the percentage to a decimal multiplier and then multiply

$$83\% \text{ of } 120 = 0.83 \times 120 = 99.6$$

Percentage Increase and Decrease (Non-Calculator)**Increase:**

To calculate a percentage increase we calculate the percentage and add the value on to the original amount

Increase 70 by 65%

$$10\% = 70 \div 10 = 7$$

$$5\% = 7 \div 2 = 3.5$$

$$60\% = 6 \times 7 = 42$$

$$65\% = 60\% + 5\% = 42 + 3.5 = 45.5$$

$$70 + 45.5 = 115.5$$

Percentage Increase and Decrease (Calculator)**Increase:**

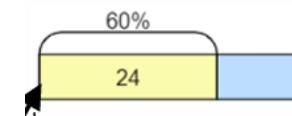
To calculate a percentage increase, calculate 65% using the decimal multiplier and add it on

Increase 70 by 65%

$$65\% \text{ of } 70 \quad 65\% = 0.65$$

$$65\% \text{ of } 70 = 0.65 \times 70 = 45.5$$

$$70 + 45.5 = 115.5$$


Finding the original amount

In a test Lucy scored 60% of her questions correctly.

Her score was 24.

How many questions were on the test?

Always draw a bar model to illustrate the question

Total questions on test

$$\begin{aligned} 60\% &= 24 \\ \div 60 & \\ 1\% &= 0.4 \\ \times 100 & \\ 100\% &= 40 \end{aligned}$$

Year 10

Probability

Keywords

Probability:

This tells us how likely something is to happen. This can be shown as decimals, percentages or fractions.

Event: One or more outcomes from an experiment

Intersection: Elements that are common to both sets

Union: The combination of elements in two sets

Product: The answer when two or more values are multiplied together

Mutually Exclusive: Two events are mutually exclusive if they cannot happen simultaneously

Independent Event: One event does not affect the probability of the other.

Example – Flipping heads on a coin has no effect on rolling a 3 on a dice

Dependent events: One outcome affects another Example – choosing one red card reduces the chance of choosing another red card

Dr Frost Key Skills

247 Probabilities using worded terms

248 Theoretical probabilities using counts

249 Sample Space Diagram

250 Probability of mutually exclusive events

251 Experimental probabilities

353 Probabilities of independent events

354 Probability of dependent events

355 and 356 Probabilities from Venn diagram (Using Venn notation)

Year 8

Find probabilities from a sample space

Find probabilities from two-way tables

Find probabilities from Venn diagrams

Year 9

Single event probability

Relative frequency - including convergence

Expected outcomes

Independent events

Use tree diagrams

Use tree diagrams to solve without replacement problems

Year 10

Find probabilities using equally likely outcomes

Use the property that probabilities sum to 1

Using experimental data to estimate probabilities

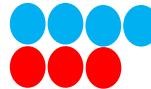
Find probabilities from tables, Venn diagrams and frequency trees

Construct and interpret sample spaces for more than one event

Calculate probability with independent events

Use tree diagrams for independent events

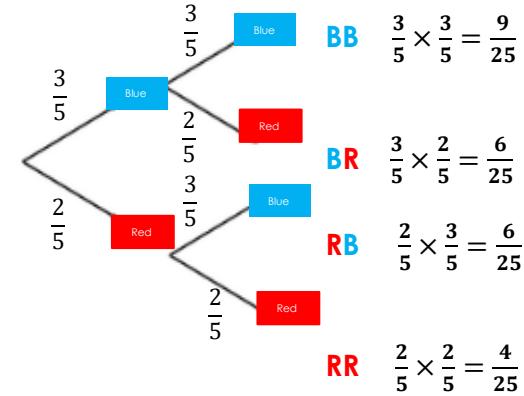
Use tree diagrams for dependent events

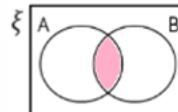

Construct and interpret conditional probabilities (tree diagrams)

Learning Journey

Key Knowledge

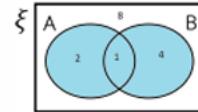
Sum to 1


Probabilities is always a value between 0 and 1

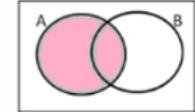

Tree Diagram for independent events

Isabel has a bag with 3 blue counters and 2 red counters. She picks a counter and replaces it before the second pick.

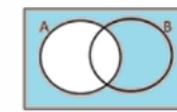
Draw a tree diagram to represent this event.



Venn diagram


in set A AND set B

$$P(A \cap B)$$


in set A OR set B

$$P(A \cup B)$$

in set A

$$P(A)$$

NOT in set A

$$P(A')$$

Year 10

Collecting, Representing and Interpreting

Keywords

Population: The whole group that is being studied

Sample: A selection taken from the population that will let you find out information about the larger group.

Representative: A sample group that accurately represents the population

Random sample: A group completely chosen by chance. No predictability to who it will include.

Bias: A built-in error that makes all values wrong by a certain amount

Primary data: Data collected from an original source for a purpose.

Secondary data: Data taken from an external location. Not collected directly.

Outlier: A value that stands apart from the data set

Frequency: This refers to the number of times an event or outcome occurs

Mode or Modal Value: This refers to the number that occurs the most.

Median: The value in the center of the data when arranged in order.

Mean:

This refers to the average of a data set and is found by adding all numbers together then dividing by the sum of the numbers

Dr Frost Key Skills

207 Mode, median, range from listed data

238 Two-way tables

240 Stem and Leaf Diagrams

244 Scatter Graphs

245 Line of Best fit

312 Estimating the mean

Year 7

Solve Problems using the mean
Finding the range and the median

Year 8

Find and interpret the range

Year 9

$$55 \div 5 = 11$$

24, 8, 11, 4, 8

Mean

- 1) Find the sum of the data
- 2) Divide the overall total by how pieces of data there are

$$24 + 8 + 11 + 4 + 8 = 55$$

Median

- 1) Arrange the numbers in order
- 2) Find the value in the middle

$$4, 8, 8, 11, 24$$

~~$$4, 8, 8, 11, 24$$~~

Mode

This is the number OR the item that occurs the most

8 is the answer here as the number appears TWICE!

NOTE:

If there is no single middle value find the mean of the two numbers left

Averages from Grouped Data

x Weight (g)	Frequency	Mid-Point	Mid-Point X Frequency
$40 < x \leq 50$	1	45	45
$50 < x \leq 60$	3	55	165
$60 < x \leq 70$	5	65	325

$$\text{Total} = 9$$

$$\text{Total} = 565$$

Mean

Overall Total \div Overall Frequency

$$565 \div 9 = 62.8 \text{ g}$$

Modal Group

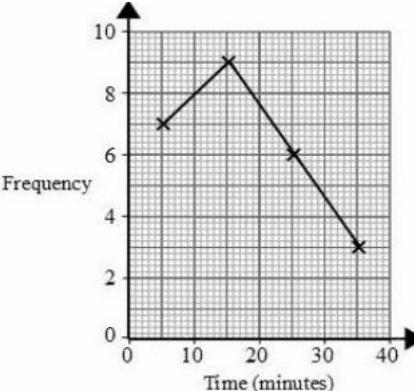
This is the group with the highest frequency

$$50 < x \leq 60$$

Year 10

Collecting, Representing and Interpreting

Dr Frost Key Skills


- 398 Cumulative Frequency Graphs
- 399 Box Plots
- 315 Frequency Polygon
- 396 Quartiles from Discrete Data
- 312 Estimating from grouped data
- 401 Histograms

Frequency Polygon (H)

A frequency polygon is a line graph which is joined using straight lines.

A Frequency Polygon is constructed by **plotting frequency on the vertical axis and the midpoint of the class intervals on the horizontal axis.**

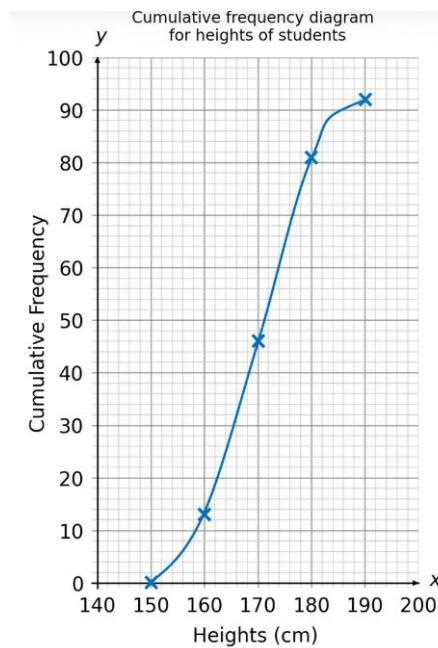
Time	Frequency
$0 \leq t < 10$	7
$10 \leq t < 20$	9
$20 \leq t < 30$	6
$30 \leq t < 40$	3

Histograms (H)

A histogram is similar to a bar chart, but where a bar chart is used for categorial or discrete data, **we use a histogram for continuous data e.g. heights, weights and time.**

Key Features

- There are no gaps between bars and bars may have different widths
- The vertical axis is labelled **frequency density**
- The **frequency** is represented by the **area of each bar.**


$$\text{Frequency Density} = \frac{\text{Frequency}}{\text{Class Width}}$$

Cumulative Frequency (H)

A cumulative frequency table shows a running total of the frequencies.

A cumulative frequency is constructed by plotting the **cumulative frequency** against the **upper boundary of the class interval** and then joined together.

Heights, h (cm)	Cumulative Frequency
$150 < h \leq 160$	13
$160 < h \leq 170$	46
$170 < h \leq 180$	81
$180 < h \leq 190$	92

