

Match-Up Compound Interest and Depreciation

1	Isla invests £300 at 4% compound interest. How much money does she have after 7 years?					
2	Yusuf invests £400 at 1% compound interest. How much money does he have after 3 years?					
3	Maria invests £375 at 2% compound interest. How much money does she have after 4 years?					
4	Arthur invests £250 in bonds at 8% compound interest. How much are the bonds worth after 4 years?					
5	A laptop which costs £450 depreciates at a rate of 12% per year. What is it worth after 2 years?					
6	A mobile phone which costs £360 depreciates at a rate of 14% per year. How much is it worth after 3 years?					
7	Fiona invests £200 at 5.5% compound interest. How much does she have after 3 years?					
8	Jamal invests £5000 at 2.5% compound interest. How much interest will he earn in 3 years?					
9	A TV which costs £475 depreciates at a rate of 13.5% per year. How much is the TV worth after 4 years?					
10	£275 is invested for 2 years at 3.5% interest then 4 years at 1.5% interest. How much is the investment worth after these 6 years?					
11	Yvonne invests £2750 at a compound interest rate of 1.25%. How much interest does Yvonne earn in 6 years?					
12	Athar buys a bike for £650. It depreciates in value by 15% in the 1^{st} year, 12.5% in the 2^{nd} year and 7.5% in the 3^{rd} year. How much is it worth after 3 years?					

£228.98
£212.80
£348.48
£265.92
£394.78
£447.18
£312.66
£340.12
£405.91
£234.85
£412.12
£384.45

1	2	3	4	5	6	7	8	9	10	11	12

Representing Statistical Data

1. The length in mm of 80 leaves is recorded in a grouped frequency table.

Length \overline{L}

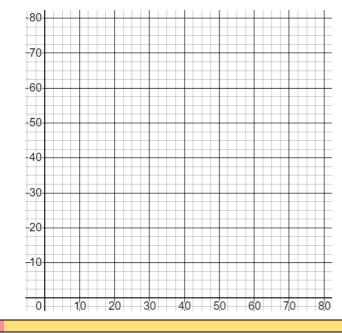
(mm)

 $20 < L \le 30$

 $30 < L \le 40$

 $40 < L \le 50$

 $50 < L \le 60$


 $60 < L \le 70$

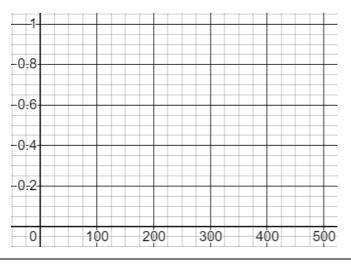
 $70 < L \le 80$

(a) Compl	ete a c	cumulative
frequency	table.	

Frequency	Length <i>L</i> (mm)	Cumulative Frequency	
4	$20 < L \le 30$		
7	$20 < L \le 40$		
15	$20 < L \le 50$		
23	$20 < L \le 60$		
22	$20 < L \le 70$		
9	20 < L ≤ 80		
	l .		

(b) Plot a cumulative frequency graph.

(c) Find the median length.


(d) Find the interquartile range of lengths.

(e) Find an estimate for the number of leaves greater than 75 mm in length.

2. The areas in m^2 of 200 gardens are recorded in a grouped frequency table.

Area (m²)	Frequency	
$0 < A \le 50$	10	
$50 < A \le 100$	25	
$100 < A \le 200$	80	
$200 < A \le 300$	65	
$300 < A \le 500$	20	

(a) Plot a histogram.

(b) Use your histogram to estimate the number of gardens that are larger than $220 m^2$.

(c) Use your histogram to estimate the median garden size.