Please check the examination d	etalls below before entering	your candidate information
Candidate surname	Oti	ner names
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Induction wo		hs and
Mathematics Practice test		-
A level questions for	GCSE Higher ti	ier
You must have: Calculator		Total Marks

Candidates may use any calculator allowed by Pearson regulations.

Calculators must not have the facility for symbolic algebra

manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams / sketches / graphs it must be dark (HB or B).
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- There are 19 questions in this question paper. The total mark for this paper is 53.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

(a) Find the value of $3x^3 + 2ax^2 - 4x + 5a$ when $x = -3$.	(2)
(b) Find the value of a when $69 + 23a = 0$.	(1)
Three Bags, A, B and C, each contain 1 red marble and some green marbles.	
Bag A contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 4 green marbles only Bag C contains 1 red marble and 2 green marbles only	
Sasha selects at random one marble from Bag A. If he selects a red marble, he stops selecting. If the marble is green, he continues by selecting at random one marble from Bag B. If he selects a red marble, he stops selecting. If the marble is green, he continues by selecting at random one marble from Bag C.	
(a) Draw a tree diagram to represent this information.	(2)
(b) Find the probability that Sasha selects 3 green marbles.	(2)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Three Bags, A, B and C, each contain 1 red marble and some green marbles. Bag A contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 4 green marbles only Bag C contains 1 red marble and 2 green marbles only Sasha selects at random one marble from Bag A. If he selects a red marble, he stops selecting. If the marble is green, he continues by selecting at random one marble from Bag B. If he selects a red marble, he stops selecting. If the marble is green, he continues by selecting at random one marble from Bag C. Bag A contains 1 red marble, he stops selecting. If the marble is green, he continues by selecting at random one marble from Bag C. Bag A contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag C contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marble and 9 green marbles only Bag B contains 1 red marbles and 9 green marbles only Bag B contains 1 red marbles and 9 green marbles only Bag B contains 1 red marbles and 9 green marbles only Bag B contains 1 red marbles and 9 green marbles only Bag B contains 1 red marbles and 9 green marbles only Bag B contains 1 red marbles only Bag B contains 1 red marbles only Bag B contains 1 red ma

3.	(a) Rearrange the equation $1 - \frac{x^2}{2} - 2x - \frac{1}{2} = 0$ into the form $ax^2 + bx + c = 0$.	
	(1	.)
		_
		_
	(b) Solve the equation found in part (α).	١,
		-, -
4.	Show that $\frac{(x+1)^2 \times (10x+10) - (5x^2+10x) \times 2(x+1)}{(x+1)^4} = \frac{A}{(x+1)^n}$ where A and are integers to be found.	– n
		<u>'</u>)
_		_
		- -
_		_
		<u>-</u>

5. Find the area of the sector *AOB*.

(2)

6. (a) Find x when $\frac{4-3x}{1+2x} = -\frac{4}{3}$

(2)

(b)

The diagram shows a right-angled triangle ABC where $AB = x^2 - x$ and $AC = \frac{3}{2}x^2 - 4x$. Find the distance BC when x = 4.

(2)

					 · · · · · · · · · · · · · · · · · · ·	
(b)			equation <i>y</i> = d the coordir			fintersectior
Find	l x when	$10 (\cos x)^2 =$	9, 0° < x < 9	90°.		
1 1110	TX WITCH	10 (003 λ)	3, 0 1, 12			

9.	Magali is studying the mean total cloud cover, in oktas, using data from the large data set.
	The daily mean total cloud cover for all 184 days from the large data set is summarised in
	the table below.

Daily mean total cloud cover (oktas)	0	1	2	3	4	5	6	7	8
Frequency (number of days)	0	1	4	7	10	30	52	52	28

One of the 184 days is selected at random.

(a) Find the probability that it has a daily mean total cloud cover of 6 or greater.

(1)

There were 28 days that had a daily mean total cloud cover of 8. For these 28 days the daily mean total cloud cover for the **following** day is shown in the table below.

Daily mean total cloud cover (oktas)	0	1	2	3	4	5	6	7	8
Frequency (number of days)	0	0	1	1	2	1	5	9	9

(b) Find the proportion of these days when the daily mean total cloud cover was 6 or greater.

(1)

10. (a) Solve the simultaneous equations

$$x + 880y = 1100$$

$$x + 300y = 680$$

(1)

(b) Find the least value of n when 2n - (428 + 0.84n) > 0

(1)

(b) Find the value of $\frac{1}{4}x^4 - \frac{2}{3}x^3 - 4x^2$ when $x = 2$.	
4 3	
(c) Expand and simplify $y = (x + 2)^2(3x^2 - 20x + 20)$.	
·	
Given that $a-b=\frac{a}{b}$, show that $a=\frac{b^2}{b-1}$.	
V 1	

11. (*a*) Expand and simplify y = x(x + 2)(x - 4).

13. Work out how far a car moving at 60 km h⁻¹ travels in 0.8 seconds, giving your answer in metres.

(1)

14. If n is an integer greater than 1, show, by considering both odd and even numbers, that $n^2 + 2$ is not divisible by 4.

(4)

15.

The diagram shows a sketch of triangle OAB.

The point *C* is such that $\overrightarrow{OC} = 2 \overrightarrow{OA}$.

The point *M* is the midpoint of *AB*.

The straight line through C and M cuts OB at the point N.

Given $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, find \overrightarrow{CM} in terms of \mathbf{a} and \mathbf{b} .

(2)

16.	Use	the	iteration	formul	a
TO.	o_{3c}	UIIC	ittiation	10111141	и

$$x_{n+1} = 2x_n^{1-x_n}$$

with x_1 = 1.5 to find x_4 to 3 decimal places.

(2)

17. (a) A runner finishes a race in 24 + (6×1.05) + (6×1.05^2) minutes. Find this time in hours, minutes and seconds.

(1)

(b) A runner finishes a race in 24 + 6.3 \times $\frac{(1.05^{16}-1)}{1.05-1}$ minutes. Find this time in hours, minutes and seconds.

(2)

18. $y = \frac{p-3x}{(2x-q)(x+3)}$. Find the value of *p* when $y = \frac{1}{2}$, x = 3 and q = 4.

(2)

[A sphere of radius r has volume $\frac{4}{3}\pi r^3$ and surface area $4\pi r^2$]

A manufacturer produces a storage tank modelled in the shape of a hollow circular cylinder closed at one end with a hemispherical shell at the other end as shown in the diagram above.

The cylinder has radius r metres and height h metres and the hemisphere has radius r metres.

The volume of the tank is 6 m³.

Show that the surface area of the tank, in m², is given by

$$\frac{12}{r} + \frac{5}{3}\pi r^2$$

(4)
