Preparing for A Level Chemistry - Induction Activity

There are many concepts that are taught in A Level Chemistry that are extensions / developments from GCSE. To help bridge the gap, it is important to understand some key concepts.

There are fundamental Maths and processing skills you need. For each task, please read / watch the linked document, followed by answering the questions.

You need to bring this document with you for the first lesson in September for it to be submitted and marked.

Standard form https://www.youtube.com/watch?v=H3ewmorcYjU

1 Change the following values to standard form.
a boiling point of sodium chloride: $1413{ }^{\circ} \mathrm{C}$
b largest nanoparticles: $0.0001 \times 10^{-3} \mathrm{~m}$
c number of atoms in 1 mol of water: 1806×10^{21}
2 Change the following values to ordinary numbers.
a 5.5×10^{-6}
b 2.9×10^{2}
c 1.115×10^{4}
d 1.412×10^{-3}
e 7.2×10^{1}

Significant figures and decimal places \quad https://www.youtube.com/watch?v=gtwyWKnnm_I

3 Give the following values in the stated number of significant figures (s.f.).
a 36.937 (3 s.f.)
b 258 (2 s.f.)
c 0.04319 (2 s.f.)
d 7999032 (1 s.f.)

4 Use the equation:
number of molecules $=$ number of moles $\times 6.02 \times 10^{23}$ molecules per mole to calculate the number of molecules in 0.5 moles of oxygen. Write your answer in standard form to 3 s.f.
5 Give the following values in the stated number of decimal places (d.p.).
a 4.763 (1 d.p.)
b 0.543 (2 d.p.)
c 1.005 (2 d.p.)
d 1.9996 (3 d.p.)

Converting units

https://www.youtube.com/watch?v=R00HJXPtEGE
6 Calculate the following unit conversions.
a $300 \mu \mathrm{~m}$ to m
b 5 MJ to mJ
c 10 GW to kW

Balancing an equation https://www.youtube.com/watch?v=qMYo61jBPU8

1 Balance the following equations.
$\mathrm{aC}+\mathrm{O}_{2} \rightarrow \mathrm{CO}$
b $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
c $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
2 Balance the equations below.
a $\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
b $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
3 Balance the equations below.

$$
\begin{aligned}
& \text { a } \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { b } \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{NaNO}_{3}
\end{aligned}
$$

4 Rearrange the equation $c=\frac{n}{V}$ to make:
a n the subject of the equation
b V the subject of the equation.
5 Rearrange the equation $P V=n R T$ to make:
a n the subject of the equation
b T the subject of the equation.

Calculating concentration https://www.youtube.com/watch?v=x4QxYDyHst0

6 Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of a solution formed when 0.2 moles of a solute is dissolved in $50 \mathrm{~cm}^{3}$ of solution.
7 Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of a solution formed when 0.05 moles of a solute is dissolved in $2.0 \mathrm{dm}^{3}$ of solution.
8 Calculate the number of moles of NaOH in an aqueous solution of $36 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.

Calculating masses and gas volumes

https://www.youtube.com/watch?v=cUbW gAk7AY
9 In a reaction, 0.486 g of magnesium was added to oxygen to produce magnesium oxide.
$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
a Calculate the amount, in moles, of magnesium that reacted.
b Calculate the amount, in moles, of magnesium oxide made.
c Calculate the mass, in grams, of magnesium oxide made.
10 Oscar heated 4.25 g of sodium nitrate. The equation for the decomposition of sodium nitrate is:
$2 \mathrm{NaNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
a Calculate the amount, in moles, of sodium nitrate that reacted.
b Calculate the amount, in moles, of oxygen made.
110.500 kg of magnesium carbonate decomposes on heating to form magnesium oxide and carbon dioxide. Give your answers to 3 significant figures.
$\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
a Calculate the amount, in moles, of magnesium carbonate used.
b Calculate the amount, in moles, of carbon dioxide produced.

Calculating percentage yield

https://www.youtube.com/watch?v=jtAj0s203Cl

12 Calculate the percentage yield of a reaction with a theoretical yield of 4.75 moles of product and an actual yield of 3.19 moles of product. Give your answer to 3 significant figures.
13 Calculate the percentage yield of a reaction with a theoretical yield of 12.00 moles of product and an actual yield of 6.25 moles of product. Give your answer to 3 significant figures.

